大展弦比柔性机翼的结构动力学特性试验研究
收稿日期: 2012-11-06
修回日期: 2012-12-31
网络出版日期: 2013-01-28
基金资助
部级项目
Experimental Study on Structural Dynamic Characteristics of Flexible High-aspect-ratio Wings
Received date: 2012-11-06
Revised date: 2012-12-31
Online published: 2013-01-28
Supported by
Ministry Level Project
针对大展弦比柔性机翼尺寸大、轻质、低频、柔性等特点,为了避免传统模态测试的缺陷,提出采用车载运动条件下的环境激励方式进行机翼结构动力学特性试验研究,并初步建立了大展弦比柔性机翼的结构动力学特性测试技术。试验测试过程中,分别采用加速度计和光纤光栅(FBG)应变传感器测量经过优化的测点的结构响应,并利用特征系统实现算法(ERA)和随机子空间(SSI)法分析结构响应数据。结果表明两种方法的辨识结果均与有限元(FEM)计算结果相接近,加速度的辨识结果和FBG应变传感器测量的结果相一致。这验证了大展弦比柔性结构动力学特性车载试验方案的可行性,同时验证了FBG应变传感器应用于此类测试的有效性。
付志超 , 仲维国 , 陈志平 , 朱振宇 , 吕计男 , 刘子强 , 贾永清 . 大展弦比柔性机翼的结构动力学特性试验研究[J]. 航空学报, 2013 , 34(9) : 2177 -2184 . DOI: 10.7527/S1000-6893.2013.0063
A novel truck-mounted test scheme is proposed to research the structural dynamic characteristics of a large span high-aspect-ratio wing with the features of large-scale, lightweight, low-frequency and flexibility. To overcome the defects of the traditional modal test approach, an ambient vibration test method with optimized measuring locations is adopted to investigate the structural dynamic characteristics. Therefore a structural dynamic test method for flexible high-aspect-ratio wings with large-scales is established in this study. Both acceleration sensors and fiber Bragg grating (FBG) strain sensors are employed to measure the structural responses during the field test. The eigensystem realization algorithm (ERA) and stochastic subspace identification (SSI) method are then applied to extract modal parameters from the measured data of acceleration and strain response. The identified results show that both the ERA and SSI method results agree well with the finite element method (FEM) result, which demonstrates the feasibility of the truck-mounted scheme for structural dynamic testing. Meanwhile, the agreement between the acceleration result and strain result verifies the validity of the application of FBG strain sensors to structural dynamic testing.
[1] Thomas E N, Stephen D I, Bart H, et al. Technical findings, lessons learned, and recommendations resulting from the Helios prototype vehicle mishap. RTO-MP-AVT-145,2004.
[2] Marc B, Arne V, Yves G, et al. Solar impulse-ground vibration testing and finite element model validation of a lightweight aircraft. IFSD-2011-132, 2011.
[3] Giulio R, Giacomo F, Cestino E, et al. HELIPLAT: design, aerodynamic, structural analysis of long-endurance solar-powered stratospheric platform. Journal of Aircraft, 2004, 41(6): 1505-1520.
[4] Zhang G Y, Liu J M. Measurement of Lupu arch bridge vibration characteristics. Journal of Vibration and Shock, 2008, 27(9): 167-170. (in Chinese) 章关永,刘进明. 上海卢浦大桥主桥动力特性测试研究. 振动与冲击, 2008, 27(9): 167-170.
[5] Li H, Yao H L, Wen B C, et al. Identification of modal parameters for high-rise structures based on wavelet transform method. Journal of Vibration and Shock, 2005, 24(5): 96-98. (in Chinese) 李鹤,姚红良,闻邦椿,等. 基于小波变换方法的高层建筑模态参数辨识. 振动与冲击,2005,24(5): 96-98.
[6] Shi D F, Xu F, Shen F, et al. Modal parameter identification of structure in ambient excitation. Acta Aeronautica et Astronautica Sinica 2004, 25(2): 125-129. (in Chinese) 史东锋,许锋,申凡,等. 结构在环境激励下的模态参数辨识. 航空学报, 2004,25(2): 125-129.
[7] Zhan Q, Zhou Y, Ye Q W, et al. Detection of bridge cable force based on ERA. Journal of Electronic Measurement and Instrument, 2010, 24(8): 743-747. (in Chinese) 占晴,周宇,叶庆卫,等. 基于ERA算法的大桥斜拉索索力检测方法. 电子测量与仪器学报,2010,24(8): 743-747.
[8] Zhao D P, Tian D, Xu B Q, et al. Aerodynamic load experiment of wind turbine blade model. Journal of Agricultural Machine Research, 2010, 1(1): 202-205. (in Chinese) 赵丹平,田德,徐宝清,等. 风力发电机组叶片模型气动载荷实验. 农机化研究,2010,1(1): 202-205.
[9] Li H, Xie J, Li G Q, et al. Study on the feasibility of car-carried flutter test. Flight Dynamics, 2010, 28(5): 75-78. (in Chinese) 李翰,解江,李公权,等. 车载颤振试验可行性研究. 飞行力学,2010,28(5): 75-78.
[10] Zhou Z, He J P, Wu Y H, et al. Measurement technique based on the FBG-BOTDAR for infrastructures. China Civil Engineering Journal, 2010, 43(3): 111-118. (in Chinese) 周智,何建平,吴源华,等. 土木结构的光纤光栅与布里渊共线测试技术. 土木工程学报,2010,43(3): 111-118.
[11] Wu Z X, Yan D M, Li Z Q. Multi-parameter monitoring system based on FBG for bridge structure. Journal of Applied Optics, 2009, 30(11): 114-117. (in Chinese) 吴朝霞,阎冬梅,李志全. 光纤光栅多参数桥梁结构监测系统的研究. 应用光学,2009,30(11): 114-117.
[12] Sun S C. Application study of structural health monitoring technique to Guomao railway station. Railway Engineering, 2009(5): 65-68. (in Chinese) 孙胜臣. 地铁国贸站结构健康监测技术的应用. 铁道建筑,2009(5): 65-68.
[13] Kuang W, Song C S. Dynamic strain measurement of a simply supported plate based on FBG distributed sensing. Journal of WUT: Information & Management Engineering, 2010, 32(4): 583-587. (in Chinese) 匡维,宋春生. 基于FBG分布式传感的简支板动态应变测量. 武汉理工大学学报:信息与管理工程版,2010,32(4): 583-587.
[14] Yuan S F, Qiu L, Wang Q, et al. Application research of a hybrid piezoelectric-optic fiber integrated structural health monitoring system. Acta Aeronautica et Astronautica Sinica, 2009, 30(2): 348-356. (in Chinese) 袁慎芳,邱雷,王强,等. 压电-光纤综合结构健康监测系统的研究及验证. 航空学报,2009,30(2): 348-356.
[15] Schweikhard K A, Richards W L, Theisen J, et al. Flight demonstration of X-33 vehicle health management system components on the F/A-18 systems research aircraft. NASA/TM-2001-209037, 2001.
[16] William L K, Richards W L, Fleischer V T. Application of KO displacement theory to the deformed shape predictions of the doubly-tapered Ikhana wing. NASA/TP-2009-214653, 2009.
/
〈 | 〉 |