一种模块化航空有源滤波器的研究
收稿日期: 2012-05-16
修回日期: 2012-09-25
网络出版日期: 2013-04-23
基金资助
国家自然科学基金(51007037);航空科学基金(2011ZC52041);南京航空航天大学基本科研业务费专项科研项目(NJ20130011)
Research on a Modular Aeronautical Active Power Filter
Received date: 2012-05-16
Revised date: 2012-09-25
Online published: 2013-04-23
Supported by
National Natural Science Foundation of China (51007037); Aeronautical Science Foundation of China (2011ZC52041); NUAA Research Funding (NJ20130011) *Corresponding author. Tel.: 025-84893500 E-mail: chenz@nuaa.edu.cn
航空有源滤波器(AAPF)是解决飞机供电系统中电能质量问题的一种先进方案,而模块化设计对航空有源滤波器灵活性、可维护性和可靠性的提升作用巨大。首先提出并研究了一种新型模块化航空有源滤波器,分析了主电路数学模型及其混合载波PWM(CH-PWM)调制方式;其次基于损耗对比分析进行了主电路拓扑优化,推导了模块均压控制律并给出了系统控制策略;最后进行了仿真和实验验证。结果表明,模块化航空有源滤波器能够有效补偿航空电网中由典型非线性负载产生的谐波和无功电流分量,三相电网电流的总谐波畸变率(THD)均在5%以下,补偿效果显著。
陈仲 , 陈淼 , 汪昌友 . 一种模块化航空有源滤波器的研究[J]. 航空学报, 2013 , 34(4) : 919 -927 . DOI: 10.7527/S1000-6893.2013.0075
The aeronautical active power filter (AAPF) is an advanced solution in resolving the power quality problems of aircraft electrical power systems, and modular construction design plays an important role in improving the flexibility, maintainability and reliability of the aeronautical active power filter system. First, this paper studies a modular aeronautical active power filter which is based on the H-bridge modular circuit. The main circuit topology of the modular aeronautical active power filter is described in a physical structure and a mathematical model. A carrier hybrid pulse width modulation (CH-PWM) colligating the characteristics of carrier phase shift pulse width modulation and carrier disposition pulse width modulation is analyzed. Second, by comparing the power loss of the different main circuit solutions, a suitable topology is selected and its corresponding control strategy is given. Finally, simulation and experiment are performed to verify the theoretical analysis. The results show that the harmonic and reactive components produced by the typical nonlinear load can be compensated effectively by the modular aeronautical active power filter, and the total harmonic distortions (THD) of three-phase source currents are below 5%. Thus, a good compensation performance is achieved by the proposed scheme.
[1] Moir I, Seabridge A. Aircraft system: mechanical, electrical, and avionics subsystems integration. 3rd ed. West Sussex, UK: John Wiley & Sons, 2008.
[2] Rosero J A, Ortega J A, Aldabas E, et al. Moving towards a more electric aircraft. IEEE Aerospace and Electronic Systems Magazine, 2007, 22(2): 3-9.
[3] The People's Republic of China PLA General Armament Department. GJB181A—2003 Aircraft electric power characteristics. Beijing: Standards Press of General Armament Department, 2003: 6-9. (in Chinese) 中华人民共和国解放军总装备部. GJB181A—2003飞机供电特性. 北京: 总装备部军标出版发行部, 2003: 6-9.
[4] Gyugyi L, Strycula E C. Active ac power filter. IEEE-IAS Annual Meeting, 1976: 529-535.
[5] Akagi H, Watanabe E H, Aredes M. Instantaneous power theory and applications to power conditioning. Piscataway, NJ: IEEE Press, 2007.
[6] Singh B, Al-Haddad K, Chandra A. A review of active filters for power quality improvement. IEEE Transactions on Industrial Electronics, 1999, 46(5): 960-971.
[7] Chen Z, Luo Y P, Shi L, et al. Analytic resolution of control mechanism about two typical control schemes of parallel active power filter. Proceedings of the CSEE, 2010, 30(33): 37-43. (in Chinese) 陈仲, 罗颖鹏, 石磊, 等. 并联型APF两种典型控制方式的机制解析. 中国电机工程学报, 2010, 30(33): 37-43.
[8] Guo W F, Xu D G, Kong J, et al. Novel control method for LCL active power filter. Proceedings of the CSEE, 2010, 30(3): 42-48. (in Chinese) 郭伟锋, 徐殿国, 孔健, 等. LCL有源电力滤波器新型控制方法. 中国电机工程学报, 2010, 30(3): 42-48.
[9] Lavopa E, Zanchetta P, Sumner M, et al. Real-time estimation of fundamental frequency and harmonics for active shunt power filters in aircraft electrical systems. IEEE Transactions on Industrial Electronics, 2009, 56(8): 2875-2884.
[10] Liu J, Zanchetta P, Degano M, et al. High performance iterative learning control for active filters in aircraft power networks. The 36th Annual Conference of the IEEE Industrial Electronics Society, 2010: 2055-2060.
[11] Wang Y, Shen S H. Three-phase aeronautical active power filter based on space vector and one-cycle control. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(1): 90-93. (in Chinese) 王永, 沈颂华. 空间矢量和单周控制三相航空有源电力滤波器. 北京航空航天大学学报, 2007, 33(1): 90-93.
[12] Eid A, Abdel-Salam M, El-Kishky H, et al. Active power filters for harmonic cancellation in conventional and advanced aircraft electric power systems. Electric Power System Research, 2009, 79(1): 80-88.
[13] Eid A, El-Kishky H, Abdel-Salam M, et al. On power quality of variable-speed constant-frequency aircraft electric power systems. IEEE Transactions on Power Delivery, 2010, 25(1): 55-65.
[14] Chen X, Ma H X, Gong C Y. Novel series hybrid active power filter applied to aeronautic variable-frequency power systems. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2428-2434. (in Chinese) 陈新, 马海啸, 龚春英. 应用于航空变频电源系统的新型串联混合有源滤波器. 航空学报, 2009, 30(12): 2428-2434.
[15] Agelidis V G, Calais M. Application specific harmonic performance evaluation of multicarrier PWM techniques. IEEE Power Electronics Specialists Conference, 1988: 172-178.
[16] Mattavelli P. A closed-loop selective harmonic compensation for active filters. IEEE Transactions on Industry Applications, 2001, 37(1): 81-89.
/
〈 | 〉 |