电子与控制

基于RELAX的空中多机动目标检测与参数估计

  • 李海 ,
  • 王小寒 ,
  • 吴仁彪
展开
  • 中国民航大学 天津市智能信号与图像处理重点实验室, 天津 300300
李海 男, 博士, 副教授。主要研究方向: 干涉合成孔径雷达信号处理和空时自适应处理。 Tel: 022-24092451 E-mail: haili@cauc.edu.cn;王小寒 男, 硕士生。 主要研究方向: 机载雷达空中动目标检测算法研究。 Tel: 022-24092451 E-mail: xiaohan19861125@163.com;吴仁彪 男, 博士, 教授, 博士生导师。主要研究方向: 自适应阵列信号处理、 空时自适应处理等。 Tel: 022-24092596 E-mail: rbwu@vip.163.com

收稿日期: 2012-03-23

  修回日期: 2012-12-14

  网络出版日期: 2013-04-23

基金资助

国家自然科学基金(61071194,61231017,60979002,61079008);中国民航大学基金(2011kyE06)

Detection and Parameter Estimation of Multicomponent Air Maneuvering Targets via RELAX

  • LI Hai ,
  • WANG Xiaohan ,
  • WU Renbiao
Expand
  • Tianjin Key Laboratory for Advanced Signal Processing, Civil Aviation University of China, Tianjin 300300, China

Received date: 2012-03-23

  Revised date: 2012-12-14

  Online published: 2013-04-23

Supported by

National Natural Science Foundation of China (61071194, 61231017, 60979002, 61079008); Fund of Civil Aviation University of China (2011kyE06) *Corresponding author. Tel.: 022-24092451 E-mail: haili@cauc.edu.cn

摘要

针对机载雷达空中多机动目标的检测问题,提出了一种基于RELAX算法的空中多机动目标检测与参数估计方法。该方法将重构时间采样技术与RELAX算法相结合,有效地抑制了检测过程中强信号分量对弱信号分量的影响,在待测单元内存在多个目标时,能够获得很好的参数估计结果,并且在脉冲点数有限的情况下,该方法得到的参数估计精度依然很高。同时,本文还推导了空中多机动目标参数估值的克拉美罗界(CRB),为估计结果提供了理论下限。仿真结果证明了该方法的有效性。

本文引用格式

李海 , 王小寒 , 吴仁彪 . 基于RELAX的空中多机动目标检测与参数估计[J]. 航空学报, 2013 , 34(4) : 873 -881 . DOI: 10.7527/S1000-6893.2013.0148

Abstract

In this paper, a method based on RELAX is presented for detecting the multicomponent air maneuvering targets with the strong clutter background. This method combines the technique of reconstructing time samples with RELAX and effectively suppresses the interferences by stronger targets on the detection of weak targetsr. Therefore, the detection performance and parameter estimation precision of the multicomponent targets are enhanced at the same time. The method can provide an accurate estimate of the parameters even when the data sample is limited. At the same time, the Cramer-Rao bounds (CRBs) for the multicomponent maneuvering targets in airborne radar are derived. The effectiveness of the method is verified via simulated data.

参考文献

[1] Klemm R. Space-time adaptive processing principles and applications. London: The Institution of Electrical Engineers, 1998: 1-12.

[2] Wang Y L, Peng Y N. Space-time adaptive processing. Beijing: Tsinghua University Press, 2000: 26-45.

[3] Bao Z, Liao G S, Wu R B. Adaptive spatial-temporal processing for airborne radars. Chinese Journal of Electronics, 1993, 2(1): 1-7.

[4] Bao Z, Zhang Y H, Liao G S. Space-time signal processing for airborne radars. Modern Radar, 1994, 16(1):38-48.

[5] Wang D M. Study on space time adaptive maneuvering target detection technology. Tianjin: College of Electronic Information Engineering, Civil Aviation University of China, 2011.(in Chinese) 王冬梅. 机载雷达空中机动目标检测. 天津: 中国民航大学电信学院, 2011.

[6] Liu J C. Study on accelerating target detection and tracking. Changsha: School of Electronic Science and Engineering, National University of Defense Technology, 2007: 1-3.(in Chinese) 刘建成. 加速机动目标检测及跟踪技术研究. 长沙: 国防科学技术大学电子科学与工程学院, 2007: 1-3.

[7] Wu R B, Wang X H, Li H. Detection of the air maneuvering target based on the reconstruction of time sampling in the airborne radar. 2011 IEEE CIE International Conference on Radar. Chengdu, China: Institute of Electrical and Electronics Engineers, 2011: 38-41.

[8] Wu R B, Wang X H, Li H. Detection and parameter estimation of air maneuvering targets via reconstructing time samples. Journal of Electronics & Information Technology, 2012, 34(4): 936-942.(in Chinese) 吴仁彪, 王小寒, 李海. 基于重构时间采样的空中机动目标检测与参数估计. 电子与信息学报, 2012, 34(4): 936-942.

[9] Qi L, Tao L, Zhou S Y, et al. Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform. Science in China (Series F): Information Sciences, 2003, 33(8): 749-759.

[10] Pei S C, Ding J J. Fractional Fourier transform, Wigner distribution, and filter design for stationary and nonstationary random processes. IEEE Transactions on Signal Processing, 2010, 58(8): 4079-4092.

[11] Tao R, Deng B, Wang Y. Fractional Fourier transform and its applications. Beijing: Tsinghua University Press, 2009: 12-49.(in Chinese) 陶然, 邓兵, 王越. 分数阶傅里叶变换以及应用. 北京: 清华大学出版社, 2009: 12-49.

[12] Zhao X H, Tao R, Deng B, et al. New methods for fast computation of fractional Fourier transform. Acta Electronca Sinica, 2007, 35(6): 1089-1093. (in Chinese) 赵兴浩, 陶然, 邓兵, 等. 分数阶傅里叶变换的快速计算新方法. 电子学报, 2007, 35(6): 1089-1093.

[13] Liu Z S, Li J, Petre S. RELAX-based estimation of damped sinusoidal signal parameters. Signal Processing, 1997, 62(3): 311-321.

[14] Wu R B, Li J. Time-delay estimation via optimizing highly oscillatory cost functions. IEEE Journal of Oceanic Engineering, 1998, 23(3): 235-244.

[15] Wu R B, Jia Q Q, Li H. Detection of fast moving dim targets on airborne radar via STAP. Journal of Electronics & Information Technology, 2011, 33(6):1459-1464. (in Chinese) 吴仁彪, 贾琼琼, 李海. 机载雷达高速空中微弱动目标检测新方法. 电子与信息学报, 2011, 33(6): 1459-1464.

文章导航

/