带公差约束的数字样板叶型检测方法
收稿日期: 2012-11-29
修回日期: 2013-01-08
网络出版日期: 2013-01-15
基金资助
国家"973"计划(2013CB035802);高等学校博士学科点专项科研基金(20106102120023);中国博士后科学基金(2012M512028)
Inspection Method of Blade Shape Based on Digitized Template with Design Tolerance Constraints
Received date: 2012-11-29
Revised date: 2013-01-08
Online published: 2013-01-15
Supported by
National Basic Research Program of China (2013CB035802);Research Fund for the Doctoral Program of Higher Education of China (20106102120023);China Postdoctoral Science Foundation (2012M512028)
针对航空发动机叶片三坐标测量机(CMM)测量过程中误差检测与评定的问题,提出了一种带公差约束的数字样板叶型检测方法,以实现叶型误差的快速准确评定。在实物样板检测原理的基础上,分析叶型偏移、扭转与轮廓度之间的耦合关系,建立公差约束条件。根据CAD设计模型构造数字样板,建立带公差约束的样板匹配数学模型,并利用拟牛顿法进行非线性优化求解,在设计公差的约束条件下实现叶片测量点与数字样板的精确匹配。最后通过对某叶片型面测量数据进行仿真分析和实例验证,表明该方法比最小二乘(LSQ)方法的误差评定结果更为精确可靠,且与实物样板检测结果一致。
胡述龙 , 张定华 , 张莹 , 吴宝海 . 带公差约束的数字样板叶型检测方法[J]. 航空学报, 2013 , 34(10) : 2411 -2418 . DOI: 10.7527/S1000-6893.2013.0053
To deal with the error evaluation and inspection of aero-engine blade airfoils using coordinate measuring machine (CMM), a new inspection method of digitized template considering design tolerances is proposed for cross-sectional error evaluation with high precision and rapid speed. Based on the principle of certified reference template inspection, the complicated relationship among three kinds of tolerances is discussed and the constraints are established. In addition, a digitized template is constructed according to the CAD design model, and then a mathematical matching model with tolerance constraints is built to accomplish precise matching between the measurement points and digitized template. In order to obtain the solution of the model, an algorithm of quasi-Newton method is applied for precise matching. Simulation test and practical example prove that the proposed method is more precise and reliable than the least squares (LSQ) method and the result coincides with that from the certified reference template inspection well.
[1] Hsu T H, Lai J Y, Ueng W D. On the development of airfoil section inspection and analysis technique. International Journal of Advanced Manufacturing Technology, 2006, 30(1-2): 129-140.
[2] Fan K C, Tsai T H. Optimal shape error analysis of the matching image for a free-form surface. Robotics and Computer Integrated Manufacturing, 2001, 17(3): 215- 222.
[3] Li Y D, Gu P H. Free-form surface inspection techniques state of the art review. Computer-Aided Design, 2004, 36(13): 1395-1417.
[4] Besl P J, Mckay N D. A method for registration of 3D shapes. IEEE Transactions on Pattern Analysis Machine Intelligence, 1992, 14(2): 239-256.
[5] Xiong Z H, Chu Y X, Liu G F, et al. Workpiece localization and computer aided setup system. Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001: 1141-1146.
[6] Yi X, Ma L, Li Z. A geometric algorithm for symmetric workpiece localization. Proceedings of the 7th World Congress on Intelligent Control and Automation, 2008: 6025-6029.
[7] Shen B, Huang G Q, Mak K L, et al. A best-fitting algorithm for optimal location of large-scale blanks with free-form surfaces. Journal of Materials Processing Technology, 2003, 139(1-3): 310-314.
[8] Chatelain J F. A level-based optimization algorithm for complex part localization. Precision Engineering, 2005, 29(2): 197-207.
[9] Sun Y W, Xu J T, Guo D M, et al. A unified localization approach for machining allowance optimization of complex curved surfaces. Precision Engineering, 2009, 33(4): 516-523.
[10] Zhu L M, Xiong Z H, Ding H, et al. A distance function based approach for localization and profile error evaluation of complex surface. Journal of Manufacturing Science and Engineering, 2004, 126(3): 542-554.
[11] Sun Y W, Ming W X, Ming G D, et al. Machining localization and quality evaluation of parts with sculptured surfaces using SQP method. International Journal of Advanced Manufacturing Technology, 2009, 42(11): 1131-1139.
[12] Li Y D, Gu P H. Feature-based alignment and comparison between portion and whole of free-form surfaces. CIRP Annals-Manufacturing Technology, 2005, 54(1): 135-138.
[13] Zhang D H, Cheng Y Y, Bu K, et al. Reliable alignment method for blade shape analysis considering its blend and twist deformation. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2449-2455. (in Chinese) 张定华, 程云勇,卜昆, 等. 考虑弯扭变形的叶片模型配准方法. 航空学报, 2009, 30(12): 2449-2455.
[14] Cheng Y Y. Key techniques research for turbine blade shape precision analysis system. Xi'an: School of Mechanical Engineering, Northwestern Polytechnical University, 2007. (in Chinese) 程云勇. 涡轮叶片成形精度分析系统关键技术研究. 西安: 西北工业大学机电学院, 2007.
[15] Lin X J, Shan C W, Wang Z Q, et al. Measurement techniques of coordinate measuring machine for blade surface of aero-engine. Computer Integrated Manufacturing System, 2012, 18(1): 125-131. (in Chinese) 蔺小军, 单晨伟, 王增强, 等. 航空发动机叶片型面三坐标测量机测量技术. 计算机集成制造系统, 2012, 18(1): 125-131.
[16] Xie Z, Li J P, Tang Z Y. The nonlinear optimization. Changsha: National University of Defense Technology Press, 2003: 188-199. (in Chinese) 谢政, 李建平, 汤泽滢. 非线性最优化. 长沙: 国防科学技术大学出版社, 2003: 188-199.
/
〈 | 〉 |