电子与控制

基于输入成形的挠性航天器自适应滑模控制

  • 苗双全 ,
  • 丛炳龙 ,
  • 刘向东
展开
  • 1. 北京理工大学 自动化学院, 北京 100081;
    2. 北京理工大学 复杂系统智能控制与决策重点实验室, 北京 100081
苗双全 男,硕士研究生。主要研究方向:航天器挠性振动抑制和姿态控制。Tel:010-68912460 E-mail:miao.sq@163.com;丛炳龙 男,博士研究生。主要研究方向:航天器姿态控制和非线性控制。Tel:010-68912460 E-mail:cbl@bit.edu.cn;刘向东 男,博士,教授,博士生导师。主要研究方向:伺服控制和航天器姿态控制。Tel:010-68912460 E-mail:xdliu@bit.edu.cn

收稿日期: 2012-10-23

  修回日期: 2013-01-04

  网络出版日期: 2013-01-15

基金资助

国家自然科学基金(61104153);国家"973"计划(2012CB720000)

Adaptive Sliding Mode Control of Flexible Spacecraft on Input Shaping

  • MIAO Shuangquan ,
  • CONG Binglong ,
  • LIU Xiangdong
Expand
  • 1. School of Automation, Beijing Institute of Technology, Beijing 100081, China;
    2. Key Laboratory for Intelligent Control & Decision of Complex Systems, Beijing Institute of Technology, Beijing 100081, China

Received date: 2012-10-23

  Revised date: 2013-01-04

  Online published: 2013-01-15

Supported by

National Natural Science Foundation of China (61104153);National Basic Research Program of China (2012CB720000)

摘要

针对大型挠性航天器姿态机动过程中的振动抑制问题,提出一种输入成形(IS)与自适应滑模控制(ASMC)相结合的控制策略。该控制策略利用输入成形抑制标称挠性系统的残余振动,并通过滑模控制保证实际系统在参数不确定性和外部干扰的影响下实现对标称系统的跟踪,解决了输入成形对参数不确定性和外部干扰的敏感性问题。进一步采用自适应技术去除了滑模切换增益对参数不确定性和干扰上界的先验性要求。仿真结果表明,在参数不确定性和外界干扰的影响下,该控制方法能够保证在完成姿态机动的同时抑制航天器的挠性振动。

本文引用格式

苗双全 , 丛炳龙 , 刘向东 . 基于输入成形的挠性航天器自适应滑模控制[J]. 航空学报, 2013 , 34(8) : 1906 -1914 . DOI: 10.7527/S1000-6893.2013.0322

Abstract

In order to deal with vibration suppression in the process of a large flexible spacecraft attitude maneuver, this paper puts forward a method which combines input shaping (IS) with adaptive sliding mode control (ASMC). This strategy suppresses the flexible nominal system residual vibration by input shaping, and the sliding mode control ensures an actual system tracking the nominal system under the influence of parameter uncertainties and external disturbances, solving the problem of the sensitivity of input shaping to parameter uncertainty and external disturbance. Furthermore, when the adaptive law for the switch gain is utilized for the sliding mode, the prior knowledge of the upper bounds on the external disturbance and parameter uncertainty is not required for switching gain tuning. Finally, simulation results show that the proposed control method can ensure the desired attitude maneuver and residual vibration suppression under parameter uncertainty and external disturbance.

参考文献

[1] Smith O J M. Feedback control systems. New York: McGraw-Hill Book Company, 1958: 331-345.

[2] Singer N C, Seering W P. Preshaping command inputs to reduce system vibration. Journal of Dynamic Systems, Measurement, and Control, 1990, 112: 76-82.

[3] Tuttle T D, Seering W P. A zero-placement technique for designing shaped inputs to suppress multiple-mode vibration. Proceedings of the American Control Conference, 1994, 3: 2533-2537.

[4] Pao L Y. Multi-input shaping design for vibration reduction. Automatica, 1999, 35(1): 81-89.

[5] Hyde J M, Seering W P. Using input command pre-shaping to suppress multiple mode vibration. International Conference on Robotics and Automation, 1991: 2604-2609.

[6] Tewari A. Active vibration suppression of spacecraft with rate-weighted optimal control and multi-mode command shaping. AIAA-2004-5296, 2004.

[7] Lau M A, Pao L Y. Input shaping and time-optimal control of flexible structures. Automatica, 2003, 39(5): 893-900.

[8] Wie B, Sinha R, Sunkel J, et al. Robust fuel and time optimal control of uncertain flexible space structure. Proceedings of the American Control Conference, 1993: 2475-2479.

[9] Pao L Y, Singhose W E. On the equivalence of minimum time input shaping with traditional time-optimal control. Proceeding of the Conference on Control Application, 1995.

[10] Singhose W E, Kim D, Kenison M. Input shaping control of double-pendulum bridge crane oscillations. Journal of Dynamic Systems, Measurement, and Control, 2008, 130(3): 034504.

[11] Singhose W E, Derezinski S, Singer N C. Extra-insensitive input shapers for controlling flexible spacecraft. Journal of Guidance, Control, and Dynamics, 1996, 19(2): 385-391.

[12] Singhose W E, Pao L Y, Seering W P. Time-optimal rest-to-rest slewing of multi-mode flexible spacecraft using ZVD robustness constraints. AIAA-1996-3845, 1996.

[13] Yavuz H, Mstkogˇlu S, Kapucu S. Hybrid input shaping to suppress residual vibration of flexible systems. Journal of Vibration and Control, 2011, 18(1): 132-140.

[14] Kong X R, Yang Z X, Ye D, et al. Feedback control in conjunction with input shaping for flexible spacecraft vibration suppression. Journal of Vibration and Shock, 2010, 29(3): 72-76. (in Chinese) 孔宪仁, 杨正贤, 叶东, 等. 基于输入成形的柔性航天器振动闭环抑制方法研究. 振动与冲击, 2010, 29(3): 72-76.

[15] Hu Q L, Ma G F. Flexible spacecraft attitude maneuvering and vibration damping using variable structure control input shaping. Journal of Harbin Institude of Technology, 2006, 38(10): 1769-1776. (in Chinese) 胡庆雷, 马广富. 基于变结构/输入成形的航天器振动抑制方法. 哈尔滨工业大学学报, 2006, 38(10): 1769-1776.

[16] Hu Q L, Ma G F. Active vibration suppression in flexible spacecraft with mismatched uncertainty via sliding mode/shaped input control. Journal of Vibration and Shock, 2007, 26(6): 133-138. (in Chinese) 胡庆雷, 马广富. 基于滑模输出反馈与输入成形控制相结合的挠性航天器主动振动抑制方法. 振动与冲击, 2007, 26(6): 133-138.

[17] Cong B L, Liu X D, Chen Z. Adaptive integral sliding mode control for rigid spacecraft attitude tracking. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 620-628. (in Chinese) 丛炳龙, 刘向东, 陈振. 刚体航天器姿态跟踪系统的自适应积分滑模控制. 航空学报, 2013, 34(3): 620-628.

[18] Wheeler G, Su C Y, Stepanenko Y. A sliding mode controller with improved adaption laws for the upper bounds on the norm of uncertainties. Automatica, 1998, 34(12): 1657-1661.

文章导航

/