流体力学、飞行力学与发动机

涡轮叶片冷却有效性分析

  • 丁阳 ,
  • 常海萍
展开
  • 南京航空航天大学 能源与动力学院, 江苏 南京 210016
丁阳,男,博士研究生。主要研究方向:航空发动机传热。Tel:025-84892201-2608,E-mail:dy02jx006@163.com;常海萍,女,教授,博士生导师。主要研究方向:航空发动机传热。Tel:025-84892201-2312,E-mail:chppe@nuaa.edu.cn

收稿日期: 2012-02-14

  修回日期: 2012-06-01

  网络出版日期: 2013-01-19

基金资助

省部级项目

Analysis of Turbine Blade Cooling Effectiveness

  • DING Yang ,
  • CHANG Haiping
Expand
  • College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2012-02-14

  Revised date: 2012-06-01

  Online published: 2013-01-19

Supported by

Ministry-level Project

摘要

为了获得内部换热效率和气膜冷却效率对综合冷却效率的影响规律,建立了简化物理模型对涡轮叶片复合冷却有效性进行分析,得到了内部换热效率与气膜冷却效率对综合冷却效率的影响规律:较低热负荷状态下,内部换热效率提高,综合冷却效率随之提高,内部换热效率对综合冷却效率影响大;较高热负荷状态下,气膜冷却效率对综合冷却效率影响增大,内部换热效率的影响减弱;过高的热负荷会出现综合冷却效率随着内部换热效率的增加而下降的情况,导致内部冷却失效。

本文引用格式

丁阳 , 常海萍 . 涡轮叶片冷却有效性分析[J]. 航空学报, 2013 , 34(1) : 46 -51 . DOI: 10.7527/S1000-6893.2013.0006

Abstract

In order to figure out how internal heat exchange efficiency and film cooling effectiveness influence the overall cooling effectiveness, a simplified physical model has been built to analyze factors that influence turbine blade overall cooling effectiveness. Several conclusions are drawn as follows. Under low relative heat load, the overall cooling effectiveness rises as the internal heat exchange efficiency improves, which indicates that the internal heat exchange efficiency has a strong positive effect on the overall cooling effectiveness. Under high relative heat load, film cooling effectiveness has a stronger effect on overall cooling effectiveness, while the influence of internal heat exchange efficiency decreases. As internal heat exchange efficiency increases, excessive heat load makes overall cooling effectiveness decrease, which leads to the failure of internal cooling.

参考文献

[1] Ni M, Zhu H R, Qiu Y, et al. Review of aero-turbine blade cooling technologies. Gas Turbine Technology, 2005, 18(4): 25-38. (in Chinese)

倪萌, 朱惠人, 裘云, 等. 航空发动机涡轮叶片冷却技术综述. 燃气轮机技术, 2005, 18(4): 25-38.



[2] Zheng J R, Ji H H, Kong Z K, et al. Experimental investigation on composite cooling of turbine blade. Journal of Aerospace Power, 1989, 4(4): 357-362. (in Chinese)

郑际睿, 吉洪湖, 孔祖开, 等. 涡轮叶片复合冷却的实验研究. 航空动力学报, 1989, 4(4): 357-362.



[3] Hu Y L, Guo W, Liu Y F, et al. Cooling efficiency research on a compound air-cooled. Gas Turbine Experiment and Research, 2004, 17(3): 26-30. (in Chinese)

呼艳丽, 郭文, 刘玉芳, 等. 复合式气冷涡轮导叶综合冷却效率试验研究. 燃气涡轮试验与研究, 2004, 17(3): 26-30.



[4] Hollworth B R, Dagan L. Arrays of impinging jets with spent fluid removal through vent holes on the target surface. Journal of Engineering for Power, 1980, 102(4): 944-999.



[5] Quan D L, Yu X H, Liu S L, et al. Experimental and numerical investigation of internal-flow resistance characteristics in laminate porous plates. Journal of Propulsion Technology, 2003, 24(5): 425-428. (in Chinese)

全栋梁, 郁新华, 刘松龄, 等. 层板冷却结构流阻特性的实验与数值模拟. 推进技术, 2003, 24(5): 425-428.



[6] Funazaki K, Tarukawa Y, Kudo T, et al. Heat transfer characteristics of an integrated cooling configuration for ultra-high temperature turbine blades: experimental and numerical [JP+3]investigations. ASME Paper, GT-2001-148, 2001.



[7] Nakamata C, Okita Y, Matsuno S, et al. Spatial arrangement dependence of cooling performance of an integrated impingement and pin fin cooling configuration. ASME paper, GT-2005-68348, 2005.



[8] Lee D H, Oh S H, Jung E Y. Effect of array jet on cooling effectiveness on full-coverage film cooled surface. Proceedings of the ASME 2009 Heat Transfer Summer Conference, 2009.



[9] Yuan L. Numerical simulation of compound air-cooling turbine blade with parallel computation. Nanjing: College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, 2005. (in Chinese)

袁丽. 基于并行计算的涡轮叶片复合冷却数值模拟. 南京: 南京航空航天大学能源与动力学院, 2005.



[10] Thurman D, Poinsatte P. Experimental heat transfer and bulk air temperature measurements for a multipass internal cooling model with ribs and bleed. ASME Journal of Turbomachinery, 2001, 123(1): 90-96.



[11] Bunker R S, Bailey J C. Film cooling discharge coefficient measurements in a turbulated passage with internal crossflow. ASME Journal of Turbomachinery, 2001, 123(4): 774-780.



[12] Qiu Y, Zhu H R, Ni M, et al. Effect of rib turbulator orientation on the discharge coefficient of suction hole in the internal passage. Journal of Aerospace Power, 2003, 18(2): 235-238. (in Chinese)

裘云, 朱惠人, 倪萌, 等. 带肋壁与出流孔内流通道中肋角度对流量系数的影响. 航空动力学报, 2003, 18(2): 235-238.



[13] Chantdoup D, Bölcs A. Flow characteristics in two-leg internal coolant passages of gas turbine airfoils with film-cooling hole ejection. ASME Journal of Turbomachinery, 2002, 124(3): 499-507.



[14] Montomoli F, Adami P, Gatta S D, et al. Conjugate heat transfer modeling in film cooled blades. Proceedings of ASME Turbo Expo 2004 Power for Land, Sea, and Air, 2004.



[15] Hylton L D, Mihelc M S, Turneu E R, et al. Analytical and experimental evaluation of the heat transfer distribution over the surface of turbine vanes. NASA-CR-168015, 1983.



[16] Nealy D A, Mihelc M S, Hylton L D, et al, Measurements of heat transfer distribution over the surfaces of highly loaded turbine nozzle guide vanes. ASME Journal of Engineering for Gas Turbines and Power, 1984, 106(1): 149-158.

文章导航

/