流体力学与飞行力学

基于CFD方法的直升机前飞状态配平分析

  • 冯德利 ,
  • 招启军 ,
  • 徐国华
展开
  • 南京航空航天大学 直升机旋翼动力学国家级重点实验室, 江苏 南京 210016
冯德利 男, 硕士研究生。主要研究方向: 直升机飞行力学、 计算流体力学、 直升机空气动力学。 Tel: 025-84893753 E-mail: fengdeli_1987@126.com;招启军 男, 教授, 博士生导师。主要研究方向: 直升机计算流体力学、 直升机空气动力学及流动控制等。 Tel: 025-84893753 E-mail: zhaoqijun@nuaa.edu.cn;徐国华 男, 教授, 博士生导师。主要研究方向: 直升机空气动力学、 直升机计算流体力学。 Tel: 025-84892117 E-mail: ghxu@nuaa.edu.cn

收稿日期: 2012-11-01

  修回日期: 2012-12-17

  网络出版日期: 2013-01-05

基金资助

国家自然科学基金(11272150)

Trim Analysis of Helicopter in Forward Flight Based on CFD Method

  • FENG Deli ,
  • ZHAO Qijun ,
  • XU Guohua
Expand
  • National Key Laboratory of Rotorcraft Aeromechanics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2012-11-01

  Revised date: 2012-12-17

  Online published: 2013-01-05

Supported by

National Natural Science Foundation of China (11272150)

摘要

在直升机非线性全量飞行动力学模型的基础上,提出了一种耦合计算流体力学(CFD)方法的前飞状态配平计算分析方法。为提高传统飞行动力学建模中的直升机旋翼、机身和尾桨等部件的气动力计算精度,降低对试验数据的依赖性,建立了一个以Navier-Stokes方程为控制方程且包含旋翼和尾桨动量源项的直升机气动干扰流场及气动力的计算方法。采用非结构网格技术生成围绕直升机的网格,空间方向采用Jameson中心差分格式进行离散,时间推进采用五步龙格库塔法,并添加人工黏性以抑制解的数值振荡等,同时采用当地时间步长、变系数的隐式残值光顺等方法加速流场收敛。在耦合CFD方法的配平计算中,建立了一种将CFD计算得到的气动力与飞行动力学中的气动力高效耦合的策略。在飞行动力学模型和CFD方法验证的基础上,以UH-60A直升机为研究对象,进行了耦合CFD方法的全机配平分析,最后检验了耦合CFD模型的直升机配平方法的收敛性和精度。结果表明,该方法可以有效地提高配平分析精度,满足工程分析要求。

本文引用格式

冯德利 , 招启军 , 徐国华 . 基于CFD方法的直升机前飞状态配平分析[J]. 航空学报, 2013 , 34(10) : 2256 -2264 . DOI: 10.7527/S1000-6893.2013.0318

Abstract

Based on the nonlinear numerical model of flight dynamics developed for a helicopter, a new trim method is proposed by coupling the model with the computational fluid dynamics (CFD) method in forward flight. In order to enhance the calculation precision of aerodynamic forces on aerodynamic components, such as rotor, fuselage, tail-rotor, etc., and reduce dependency on test data, a CFD model based on Navier-Stokes equations is established which includes rotor and tail-rotor momentum sources. Grids around the helicopter are generated by using unstructured grids technology. Jameson central-difference scheme is adopted in spatial discretization and the five-step Runge-Kutta method is used for temporal discretization. Artificial viscosity is added to overcome numerical oscillation of solutions. Local time step method and variable coefficient implicit residual smoothing method are used to accelerate the convergence for the helicopter flowfield. A high-efficient coupling strategy for trimming calculation coupled with CFD method is put forward by coupling the aerodynamic force from the CFD model with that from the flight dynamics model. Then the trim calculations are conducted by taking UH-60A helicopter as a numerical example on the basis of the flight dynamics model and CFD method validations. Special analysis on the precision and convergence rate of the present trim method is performed. It is demonstrated that the trim method can effectively improve trim analysis precision and meet engineering analysis requirements.

参考文献

[1] Gao Z, Chen R L. The helicopter flight dynamics. Beijing: Science Press, 2003: 4. (in Chinese) 高正, 陈仁良. 直升机飞行动力学. 北京: 科学出版社, 2003: 4.
[2] McKillip R M, Jr. Experimental studies in helicopter vertical climb performance. NASA-CR-203585, 1996.
[3] Johnson W. NDARC-NASA design and analysis of rotorcraft theoretical basis and architecture. ARC-E-DAA-TN1109, 2010.
[4] Embacher M, Keler M, Dietz M, et al. Coupled CFD-simulation of a helicopter in free-flight trim. Proceedings of 66th Annual Forum of American Helicopter Society, 2010: 3-4.
[5] Wang H M, Zhang C L. Development of comprehensive nonlinear motion equations for helicopter flight dynamics and numerical simulation. Acta Aerodynamica Sinica, 2001, 19(3): 277-282. (in Chinese) 王华明, 张呈林. 直升机非线性运动方程及其数值分析.空气动力学学报, 2001, 19(3): 277-282.
[6] Zhou G Y, Hu J Z, Cao Y H, et al. Research on a mathematical model for coaxial helicopter flight dynamics. Acta Aeronautica et Astronautica Sinica, 2003,24(4): 293-295. (in Chinese) 周国仪, 胡继忠, 曹义华, 等. 共轴式直升机飞行动力学仿真数学模型研究.航空学报, 2003, 24(4): 293-295.
[7] Zheng W D. Research on flight characteristics of black hawk helicopter. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese) 郑文东. 黑鹰直升机飞行特性研究. 南京: 南京航空航天大学, 2009.
[8] Yang A M, Qiao Z D. Navier-Stokes computation for a helicopter rotor in forward flight based on moving overset grids. Acta Aeronautica et Astronautica Sinica, 2001, 22(5): 434-436. (in Chinese) 杨爱明, 乔志德. 基于运动嵌套网格的前飞旋翼绕流N-S方程数值计算.航空学报, 2001, 22(5): 434-436.
[9] Zhao Q J, Xu G H, Zhao J G. New hybrid method for predicting the flow field of helicopter in hover and forward flight. Journal of Aircraft, 2006, 43(3): 372-380.
[10] Zhao M, Cao Y H. Numerical simulation of rotor flow field based on overset grids and several spatial and temporal discretization schemes. Chinese Journal of Aeronautics 2012, 25(2): 155-163.
[11] Ye L, Zhao Q J, Xu G H. Numerical simulation of flow field of helicopter rotor and fuselage in forward flight based on unstructured embedded grid technique. Journal of Aerospace Power, 2009, 24(4): 903-910. (in Chinese) 叶靓, 招启军, 徐国华. 非结构嵌套网格的直升机旋翼/机身前飞流场数值模拟. 航空动力学报, 2009, 24(4): 903-910.
[12] Ballin M G. Validation of a real-time engineering simulation of the UH-60A helicopter. NASA-TM-88360, 1987.
[13] Abbott W Y, Benson J O, Oliver R C, et al. Validation flight test of UH-60A for rotorcraft systems integration simulator (RSIS). USAAEFA Project 79-24, 1982.
[14] Baldwin B, Loman H. Thin-layer approximation and algebraic model for separated turbulent flows. AIAA-1978-257, 1978.
[15] Rajagopalan R G, Mathur S R. Three dimensional anal-ysis of a rotor in forward flight. Proceedings of 47th Annual Forum of American Helicopter Society, 1991: 3-8.
[16] Freeman C E,Mineck R E. Fuselage surface pressure measurements of a helicopter wind-tunnel model with a 3.15-meter diameter single rotor. NASA-TM-80051, 1979.
[17] Mineck R E, Gorton S A. Steady and periodic pressure measurements on a generic helicopter fuselage model in the presence of a rotor. NASA-TM-210286, 2000.
文章导航

/