固体力学与飞行器总体设计

纺织复合材料细观力学分析的一般性周期性边界条件及其有限元实现

  • 张超 ,
  • 许希武 ,
  • 严雪
展开
  • 南京航空航天大学 机械结构力学及控制国家重点实验室, 江苏 南京 210016
张超,男,博士研究生。主要研究方向:三维多向编织复合材料结构力学性能分析。Tel:025-84891780,E-mail:zhang_chao@nuaa.edu.cn;许希武,男,博士,教授,博士生导师。主要研究方向:工程问题的力学建模与数值仿真,复合材料结构力学,飞行器结构完整性评定技术。Tel:025-84891780,E-mail:xwxu@nuaa.edu.cn;严雪,男,硕士研究生。主要研究方向:二维编织复合材料结构力学性能分析。Tel:025-84891780,E-mail:tcyanxue@gmail.com

收稿日期: 2012-08-27

  修回日期: 2012-12-03

  网络出版日期: 2012-12-11

基金资助

国家自然科学基金(11272146)

General Periodic Boundary Conditions and Their Application to Micromechanical Finite Element Analysis of Textile Composites

  • ZHANG Chao ,
  • XU Xiwu ,
  • YAN Xue
Expand
  • State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2012-08-27

  Revised date: 2012-12-03

  Online published: 2012-12-11

Supported by

National Natural Science Foundation of China (11272146)

摘要

针对纺织复合材料细观有限元分析中单胞网格的快速生成与顺利施加周期性边界条件之间的矛盾,提出了非周期性网格划分条件下,一般性周期性边界条件的数学表达形式。基于ABAQUS有限元软件平台,通过在单胞模型的相对面、相对边及相对角点施加多点约束(MPC)方程,实现了一般性周期性边界条件的施加。结合三维四向编织复合材料单胞模型,对比分析了周期性网格划分和非周期性网格划分情况下,单胞模型受载下的变形状态、应力分布及弹性性能的预测结果,验证了一般性周期性边界条件的正确性和有效性。研究表明:一般性周期性边界条件可以实现复杂细观结构单胞模型的自由网格划分,降低网格划分的难度,提高网格生成的质量。

本文引用格式

张超 , 许希武 , 严雪 . 纺织复合材料细观力学分析的一般性周期性边界条件及其有限元实现[J]. 航空学报, 2013 , 34(7) : 1636 -1645 . DOI: 10.7527/S1000-6893.2013.0281

Abstract

In order to resolve the conflict between the quick mesh generation of a unit-cell and the successful application of the periodic boundary conditions, a more general method is developed in the micromechanical finite element analysis of textile composites with an aperiodic mesh. The application of the general periodic boundary conditions is realized by enforcing multi-point constraints (MPC) on the corresponding nodes on paired faces, edges and corners of the unit-cell on the platform of ABAQUS software. The deformation, stress distribution and the predicted mechanical properties of 3D four-directional braided composites are compared between the unit-cell models with periodic and aperiodic mesh, thus verifying the validity and applicability of the proposed boundary conditions. The results show that the general periodic boundary conditions can achieve the free meshing of unit-cells with complicated microstructures, reduce the difficulty of meshing and improve the quality of mesh generation.

参考文献

[1] Wang X M, Xing Y F. Developments in research on 3D braided composites. Acta Aeronautica et Astronautica Sinica, 2010, 31(5): 914-927. (in Chinese) 汪星明, 邢誉峰. 三维编织复合材料研究进展.航空学报, 2010, 31(5): 914-927.

[2] Byun J H. The analytical characterization of 2-D braided textile composites. Composites Science and Technology, 2000, 60(5): 705-716.

[3] Lu Z X, Liu Z X. Elastic properties for 3 dimension 5 directional braided composites. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(4): 455-460. (in Chinese) 卢子兴, 刘子仙. 三维五向编织复合材料的弹性性能. 北京航空航天大学学报, 2006, 32(4): 455-460.

[4] Zhang C, Xu X W, Guo S X. Microstructure model and finite element analysis of mechanical properties of 2D 1×1 biaxial braided composites. Acta Materiae Compositae Sinica, 2011,28(6): 215-222. (in Chinese) 张超,许希武,郭树祥. 二维二轴1×1编织复合材料细观结构模型及力学性能有限元析.复合材料学报, 2011, 28(6): 215-222.

[5] Li J C, Chen L, Zhang Y F, et al. Microstructure and finite element analysis of 3D five directional braided composites. Journal of Reinforced Plastics & Composites, 2011, 31(2): 107-115.

[6] Peng X, Cao J. A dual homogenisation and finite element approach for material characterization of textile composites. Composites Part B, 2002, 33(1): 45-56.

[7] Chen L, Tao X M, Choy C L. Mechanical analysis of 3-D braided composites by the finite multiphase element method. Composites Science and Technology, 1999, 59(16): 2383-2391.

[8] Hori M, Nemat-Nasser S. On two micromechanics theories for determining micro-macro relations in heterogeneous solids. Mechanics of Materials, 1999, 31(10): 667-682.

[9] Whitcomb J D, Chapman C D, Tang X D. Derivation of boundary conditions for micromechanics analysis of plain and satin weave composites. Journal of Composite Materials, 2000, 34(9): 724-747.

[10] Xia Z H, Zhang Y F, Ellyin F. A unified periodical boundary conditions for representative volume elements of composites and applications. International Journal of Solids and Structures, 2003, 40(8): 1907-1921.

[11] Li S G, Wongsto A. Unit cells for micromechanical analyses of particle-reinforced composites. Mechanics of Materials, 2004, 36(7): 543-572.

[12] Li S G. Boundary conditions for unit cells from periodic microstructures and their implications. Composites Science and Technology, 2008, 68(9): 1962-1974.

[13] Fang G D, Liang J, Wang B L. Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension. Composite Structures, 2009, 89(1): 126-133.

[14] Xu K, Xu X W. Finite element analysis of mechanical properties of 3D five-directional braided composites. Materials Science and Engineering A, 2008, 487(1-2): 499-509.

[15] Li D S, Fang D N, Lu Z X, et al. Finite element analysis of mechanical properties of 3D four directional rectangular braided composites, Part 2: validation of 3D finite element model. Applied Composites Materials, 2010, 17(4): 389-404.

[16] Li S, Zhou C, Yu H, et al. Formulation of a unit cell of a reduced size for plain weave textile composites. Computational Materials Science, 2011, 50(5): 1770-1780.

[17] Li S, Zou Z. The use of central reflection in the formulation of unit cells for micromechanical FEA. Mechanics of Materials, 2011, 43(12): 824-834.

[18] Carvalho N, Pinho S, Robinson P. Reducing the domain in the mechanical analysis of periodic structures, with application to woven composites. Composites Science and Technology, 2011, 71(7): 969-979.

[19] Jarvis A S. Meso-scale and multicontinuum modeling of a triaxial braided textile composites. Laramie: University of Wyoming, 2009.

[20] Suquet P. Elements of homogenization theory for inelastic solid mechanics. Sanchez-Palencia E, Zaoui A. Homogenization techniques for composite media. Berlin: Springer-Verlag, 1987.

[21] Xia Z H, Zhou C W, Yong Q L, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. International Journal of Solids and Structures, 2006, 43(2): 266-278.

[22] Xu K, Xu X W. Prediction of elastic constants and simulation of stress field of 3D braided composites based on the finite element method. Acta Materiae Compositae Sinica, 2007, 24(3): 178-185. (in Chinese) 徐焜, 许希武. 三维编织复合材料弹性性能数值预测及细观应力分析. 复合材料学报, 2007, 24(3): 178-185.

文章导航

/