流体力学与飞行力学

低声爆静音锥设计方法研究

  • 冯晓强 ,
  • 宋笔锋 ,
  • 李占科
展开
  • 西北工业大学 航空学院, 陕西 西安 710072
冯晓强 男, 博士研究生。主要研究方向: 飞行器总体设计, 声爆精确计算, 低声爆原理研究。 E-mail: fxqnwpu@163.com;宋笔锋 男, 博士, 教授, 博士生导师。主要研究方向: 飞行器总体设计、 飞行器可靠性工程、 飞行器适航技术。 E-mail: bfsong@nwpu.edu.cn;李占科 男, 博士, 副教授, 硕士生导师。主要研究方向: 飞行器总体设计。 E-mail: lzk@nwpu.edu.cn

收稿日期: 2012-06-27

  修回日期: 2012-11-20

  网络出版日期: 2012-11-29

基金资助

西北工业大学博士论文创新基金(CX201232)

Research of Low Sonic Boom Quiet Spike Design Method

  • FENG Xiaoqiang ,
  • SONG Bifeng ,
  • LI Zhanke
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2012-06-27

  Revised date: 2012-11-20

  Online published: 2012-11-29

Supported by

Doctorate Foundation of Northwestern Polytechnical University (CX201232)

摘要

声爆精确预测及低声爆设计方法已成为新一代军民用超声速飞机研制过程中必须解决的关键难题之一。基于计算流体力学(CFD)、波形参数法以及MARK-VII方法构建了高精度声爆预测方法,利用该方法对低声爆静音锥的设计展开研究。研究结果表明,静音锥的设计存在临界长度,静音锥长度小于临界长度时,静音锥产生的激波在传播过程中与机头弓形激波合并,静音锥无法起到降低声爆的作用;静音锥长度大于临界长度时,声爆水平也会略有上升。静音锥临界长度随飞行高度和飞行马赫数的变化而变化,可以根据实际飞行状态采用可伸缩设计,达到最佳的低声爆效果。多级静音锥利用多道弱激波取代机头强弓形激波,其声爆水平较单级静音锥也更低,同样,多级静音锥每一级的长度也要达到临界长度。不同静音锥头部形状产生的脱体激波形状不同,脱体距离也不同,导致阻力系数以及静音锥壁面温度有所不同,但静音锥头部形状对远场声爆信号的影响并不明显。采用静音锥的低声爆方案与原始方案比较,声爆水平得到大幅降低,阻力系数略有上升。

本文引用格式

冯晓强 , 宋笔锋 , 李占科 . 低声爆静音锥设计方法研究[J]. 航空学报, 2013 , 34(5) : 1009 -1017 . DOI: 10.7527/S1000-6893.2013.0190

Abstract

High fidelity sonic boom prediction and low sonic boom design method is one of the key technologies of next generation environment-friendly supersonic aircraft which has a direct bearing on the feasibility of commercial operation and operation economics.This paper developes a high fidelity sonic boom prediction method based on computational fluid dynamic (CFD), the wave form parameter method and the MARK-VII method. The design of a quiet spike is studied by using the high fidelity sonic boom prediction method. It is found that the critical length of the quiet spike is important. If the length of a quiet spike is shorter than its critical length, the shock wave of the spike will coalesce with the nose shock, which can lead to invalidation of the quiet spike. On the other hand, if the length of the spike is longer than the critical length, the sonic boom will increase too. The critical length of a quiet spike varies with the flight altitude and flight Mach number; therefore the length of a quiet spike changes with flight condition. Multi-order quiet spikes can produce multi-weak shocks to replace the strong nose shock, which can suppress the sonic boom level more effectively. At the same time, the length of each order of spike should be equal to the critical length. Different nose shapes of a quiet spike can produce different detached shocks and shock detachment distances, which can lead to different drag coefficients and temperatures. But the influence of nose shape on far field sonic boom is not obvious. The sonic boom of the quiet spike layout is lower than the original layout, but the drag coefficient is slightly increased.

参考文献

[1] National Research Council. High speed research aeronautics and space engineering board U.S. supersonic commercial aircraft: assessing NASA's high speed research program. Washington, D.C.: National Academy Press, 1997.
[2] Seebass A R. Sonic boom theory. Journal of Aircraft, 1969, 6(13): 177-184.
[3] Haas A, Kroo I. A multi-shock inverse design method for low-boom supersonic aircraft. AIAA-2010-0843, 2010.
[4] Li W, Shields E, Le D. Interactive inverse design optimization of fuselage shape for low-boom supersonic concepts. Journal of Aircraft, 2008, 45(4): 1381-1398.
[5] Howe D C. Improved sonic boom minimization with extendable nose spike. AIAA-2005-1014, 2005.
[6] Freund D, Simmons F. Quiet spikeTM prototype flight test results. AIAA-2007-1778, 2007.
[7] Chen P, Li X D. Frequency domain method for predicting sonic boom propagation based on Khokhlov-Zabolotskaya-Kuznetsov equation. Journal of Aerospace Power, 2010, 25(2): 359-365. (in Chinese) 陈鹏, 李晓东. 基于Khokhlov-Zabolotskaya-Kuznetsov方程的声爆频域预测法. 航空动力学报, 2010, 25(2): 359-365.
[8] Dan D. Supersonic business design based on request of sonic boom and takeoff/approaching acoustics. Chengdu: Aircraft Research and Design Institute, 2010: 31-35. (in Chinese) 但聃. 基于声爆和起降噪声要求的超音速公务机设计. 成都:中国航空研究院611所, 2010: 31-35.
[9] Feng X Q, Li Z K, Song B F. Preliminary analysis on the sonic boom of supersonic aircraft. Flight Dynamics, 2010, 28(6): 21-27. (in Chinese) 冯晓强, 李占科, 宋笔锋. 超音速客机音爆问题初步研究. 飞行力学, 2010, 28(6): 21-27.
[10] Feng X Q, Li Z K, Song B F. A research on inverse design method of a lower sonic boom supersonic aircraft configuration. Acta Aeronautica et Astronautica Sinica, 2011, 32(11): 1980-1986. (in Chinese) 冯晓强, 李占科, 宋笔锋. 超声速客机低音爆布局反设计技术研究. 航空学报, 2011, 32(11): 1980-1986.
[11] Feng X Q. The research of sonic boom prediction method and application in supersonic aircraft design. Xi'an: School of Aeronautics, Northwestern Polytechnical University, 2012.(in Chinese) 冯晓强. 声爆计算方法研究及在超声速客机设计的应用. 西安: 西北工业大学航空学院, 2012.
[12] Ozcer I A. Sonic boom prediction using Euler/full potential methodology. AIAA-2007-369, 2007.
[13] Carlson H W. A wind tunnel investigation of the effect of body shape on sonic boom pressure distributions. NASA TND-3106, 1965.
[14] Thomas C L. Extrapolation of sonic boom pressure signatures by the waveform parameter method. NASA TND-6832, 1972.
[15] Timothy P J. Comparison of sonic booms from modified linear theory to flight test data. AIAA-2012-18, 2012.
[16] Stevens S S. Perceived level of noise by Mark VII and decibels. The Journal of the Acoustical Society of America, 1972, 51(2): 575-601.
[17] Anderson J D. Fundamentals of aerodynamics. New York: McGraw-Hill, 2005: 569-572.
文章导航

/