整体叶盘高效强力复合铣A轴高精度控制技术研究
收稿日期: 2012-08-01
修回日期: 2012-11-20
网络出版日期: 2012-11-23
基金资助
国家科技重大专项 (2013ZX04001081)
Technology Research on High-precision Control of A-axis in Efficient and Powerful Milling Machine for Blisk Manufacturing
Received date: 2012-08-01
Revised date: 2012-11-20
Online published: 2012-11-23
Supported by
National Science and Technology Major Project (2013ZX04001081)
A轴单元作为五轴数控机床的关键功能部件,其控制精度直接影响整体叶盘的加工精度和表面质量。针对摩擦、齿隙、参数摄动和测量噪声等非线性干扰对A轴伺服系统控制精度的影响,提出了基于线性二次型最优控制(LQC)和滑模控制(SMC)相结合的鲁棒控制算法(LQSMC)。该方法以系统状态空间表达式及LQC为基础,通过引入基于卡尔曼滤波器和控制输入的状态估计,对系统状态空间模型进行改进并定义新的滑模面方程,使得改进后的控制算法在性能上接近LQC并能有效抑制SMC的抖振。仿真分析和实验结果表明,LQSMC算法具有控制精度高、鲁棒性强和抑制干扰能力强等优点,其能有效提高A轴伺服系统的定位精度和跟踪精度,使整体叶盘型面加工精度和表面一致性得到保证,并显著降低了表面粗糙度。
赵鹏兵 , 史耀耀 , 宁立群 . 整体叶盘高效强力复合铣A轴高精度控制技术研究[J]. 航空学报, 2013 , 34(7) : 1706 -1715 . DOI: 10.7527/S1000-6893.2013.0285
The control precision of the A-axis as a key functional component of a five-axis CNC machine tool directly affects the machining accuracy and surface quality of the blisks to be manufactured on it. Taking into consideration the influences of friction, backlash, parameter perturbation, measurement noise and other nonlinear disturbances on the control precision of an A-axis servo system, a robust control algorithm (LQSMC) based on the integration of linear quadratic optimal control (LQC) and sliding mode control (SMC) is proposed. Based on the system state space expression and LQC, this method improves the system state space model and defines a new sliding mode surface equation by introducing a state estimation based on the Kalman filter and the control input, and the improved control algorithm not only approaches the performance of LQC but also inhibits the chattering of SMC. Simulation analysis and experimental results show that LQSMC possesses high control precision, strong robustness, strong interference suppression ability and other advantages. It can effectively improve the positioning and tracking precision of the A-axis servo system, ensure blade machining precision and surface consistency, and significantly reduce surface roughness.
[1] Duan J H, Shi Y Y, Li X B, et al. Study on adaptive polishing method of flexible grinding head for blisk. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 934-940. (in Chinese) 段继豪, 史耀耀, 李小彪, 等. 整体叶盘柔性磨头自适应抛光实现方法研究. 航空学报, 2011, 32(5): 934-940.
[2] Oliveira J F G, Silva E J, Guo C, et al. Industrial challenges in grinding. CIRP Annals-Manufacturing Technology, 2009, 58(2): 663-680.
[3] Han S I, Lee K S. Robust friction state observer and recurrent fuzzy neural network design for dynamic friction compensation with backstepping control. Mechatronics, 2010, 20(3): 384-401.
[4] Suraneni S, Kar I N, Ramana M O V, et al. Adaptive stick-slip friction and backlash compensation using dynamic fuzzy logic system. Applied Soft Computing, 2005, 6(1): 26-37.
[5] Han S I, Lee J M. Adaptive dynamic surface control with sliding mode control and RWNN for robust positioning of a linear motion stage. Mechatronics, 2012, 22(2): 222-238.
[6] Liu X, Huang Q, Chen Y. Robust adaptive controller with disturbance observer for vehicular radar servo system. International Journal of Control, Automation, and Systems, 2011, 9(1): 169-175.
[7] Chena C L, Jang M J, Lin K C. Modeling and high-precision control of a ball-screw-driven stage. Precision Engineering, 2004, 28(4): 483-495.
[8] Huang S J, Wang S S. Mechatronics and control of a long-range nanometer positioning servomechanism. Mechatronics, 2009, 19(1): 14-28.
[9] Zhou Y. Research on dynamic characteristics and motion control for high speed feed drive system. Wuhan: School of Mechanical Engineering, Huazhong University of Science and Technology, 2008. (in Chinese) 周勇. 高速进给驱动系统动态特性分析及其运动控制研究. 武汉: 华中科技大学机械工程学院, 2008.
[10] Liu B, Tang W S. Modern control theory. 3rd ed. Beijing: Mechanical Industry Press, 2007: 122-126. (in Chinese) 刘豹, 唐万生. 现代控制理论. 第3版. 北京: 机械工业出版社, 2007: 122-126.
[11] Bonnansa J F, Francisco J S. Error estimates for the logarithmic barrier method in linear quadratic stochastic optimal control problems. Systems & Control Letters, 2012, 61(1): 143-147.
[12] Liu L. Optimal control of linear systems based on dynamic compensation. Tianjin: School of Electrical Engineering and Automation, Tianjin University, 2011. (in Chinese) 刘蕾. 基于动态补偿的线性系统最优控制. 天津: 天津大学电气与自动化工程学院, 2011.
[13] Datta B N. Numerical methods for linear control systems. Netherlands: Elsevier Science & Technology Books, 2004: 499-504.
[14] Cerman O, Hušek P. Adaptive fuzzy sliding mode control for electro-hydraulic servo mechanism. Expert Systems with Applications, 2012, 39(11): 10269-10277.
[15] Bandyopadhyay B, Deepak F, Kim K S. Sliding mode control using novel sliding surfaces. Berlin: Springer, 2009: 83-91.
[16] Hu Y M. Theory and application of variable structure control. Beijing: Science Press, 2003: 7-18. (in Chinese) 胡跃明. 变结构控制理论与应用. 北京: 科学出版社, 2003: 7-18.
/
〈 | 〉 |