固体力学与飞行器总体设计

FGM板三维层合模型及热-噪声载荷下的动态响应研究

  • 贺尔铭 ,
  • 胡亚琪 ,
  • 张钊 ,
  • 赵志彬
展开
  • 西北工业大学航空学院, 陕西 西安 710072
贺尔铭 男, 博士, 教授, 博士生导师。主要研究方向: 飞行器结构动力学及优化设计、 智能结构及控制。 Tel: 029-88495451 E-mail: heerming@nwpu.edu.cn;胡亚琪 男, 博士研究生。主要研究方向: 飞行器结构动力学与控制。 Tel: 029-88495451 E-mail: ah1985@163.com;张钊 男, 硕士研究生。主要研究方向: 飞行器结构设计与优化分析。 Tel: 029-88495451 E-mail: zhangzhao2_2006@163.com;赵志彬 男, 讲师, 博士研究生。主要研究方向: 多场载荷下结构动力学分析。 Tel: 029-88495451 E-mail: zhaozhibin@nwpu.edu.cn

收稿日期: 2012-07-11

  修回日期: 2012-10-30

  网络出版日期: 2012-11-22

基金资助

国家自然科学基金(50775181);航空科学基金(2012ZB53019);高等学校博士学科点专项科研基金(20116102110002);西北工业大学基础研究基金(NPU-FFR-JC20110237)

3-D Laminated Model and Dynamic Response Analysis of FGM Panels in Thermal-acoustic Environments

  • HE Erming ,
  • HU Yaqi ,
  • ZHANG Zhao ,
  • ZHAO Zhibin
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2012-07-11

  Revised date: 2012-10-30

  Online published: 2012-11-22

Supported by

National Natural Science Foundation of China (50775181); Aeronautical Science Foundation of China (2012ZB53019); Research Fund for the Doctoral Program of Higher Education of China (20116102110002); NPU Foundation for Fundamental Research (NPU-FFR-JC20110237)

摘要

为了有效地分析热-噪声联合载荷作用下的飞行器功能梯度壁板结构的非线性动态响应,提出了运用复合材料多层壳单元建立功能梯度材料(FGM)板的层合有限元建模新方法,研究了FGM板在热曲屈前、后状态下复杂的非线性时域动态响应特性,并探讨了梯度指数、热曲屈系数及声压级(SPL)等参数对FGM板非线性动态跳变响应的影响规律。FGM板三维层合建模新方法避免了采用常规有限元法(FEM)建模时需要在厚度方向划分大量单元的缺点;求解FGM板非线性动态响应时采用的隐式积分方案避免了模态叠加法对参与模态选择的经验性要求及模态截断造成的信息丢失等缺陷。仿真结果表明:FGM板层合有限元建模新方法合理可行、过程简便、计算精度高;研究发现:陶瓷-金属FGM板在热屈曲后的抗声振性能并不像热屈曲前那样介于金属板和陶瓷板之间,而是表现最差;热屈曲系数及声压级的组合形式是导致FGM板发生非线性跳变响应的主要影响因素。

本文引用格式

贺尔铭 , 胡亚琪 , 张钊 , 赵志彬 . FGM板三维层合模型及热-噪声载荷下的动态响应研究[J]. 航空学报, 2013 , 34(6) : 1293 -1300 . DOI: 10.7527/S1000-6893.2013.0232

Abstract

In order to effectively analyze the nonlinear dynamic responses of aircraft and spacecraft functionally-graded-panel structures in thermal-acoustic environments, a new laminated modeling method of functionally graded material (FGM) panel is presented by using the composite multilayer shell elements. Based on this model, the dynamic response characteristics are researched under combined thermal-acoustic loading, and the effects of gradient index, temperature and sound pressure level (SPL) on the nonlinear dynamic responses are investigated. The new laminated modeling method avoids the shortcomings of the conventional finite element method (FEM) model which has to be divided into a large number of elements along the thickness direction. The implicit integration scheme avoids the strong experience requirement in the selection of participant modes and the loss of high-order modes information due to mode truncation by the mode superposition method. Simulation results show that the laminated modeling method is feasible and has good calculation accuracy. Unlike the anti-vibration performance of the ceramic-metal FGM panel whose thermal pre-buckling is somewhere between that of the ceramic panel and the metal panel, the thermal post-buckling can lead to a worst anti-vibration performance of the ceramic-metal FGM panel. The combination form of thermal buckling coefficient and sound pressure level is the key influence factor of snap-through response.

参考文献

[1] Niino M, Hirai T, Watanabe R. Functionally gradient materials. In pursuit of super heat resisting materials for spacecraft. Journal of the Japan Society for Composite Materials, 1987, 13(6): 257-264. (in Japanese) 新野正之, 平井敏雄, 渡辺龍三. 傾斜機能材料——宇宙機用超耐熱材料を目指して. 日本複合材料学会誌, 1987, 13(6): 257-264.
[2] Przekop A, Rizzi S A, Sweitzer K A. An investigation of high-cycle fatigue models for metallic structures exhibiting snap-through response. AIAA-2007-2204, 2007.
[3] Sankar B V, Tzeng J T. Thermal stresses in functionally graded beams. AIAA Journal, 2002, 40(6): 1228-1232.
[4] Cao Z Y. Unified expression of natural frequency solutions for functionally graded composite rectangular plates under various boundary conditions. Acta Materiae Compositae Sinica, 2005, 22(5): 172-177. (in Chinese) 曹志远. 不同边界条件功能梯度矩形板固有频率解的一般表达式. 复合材料学报, 2005, 22(5): 172-177.
[5] Gao L M, Wang J, Zhong Z, et al. An analysis of surface acoustic wave propagation in functionally graded plates with homotopy analysis method. Acta Mechanica, 2009, 208(3-4): 249-258.
[6] Zhu H W, Li R C, Yang C J. Finite element solution of functionally graded piezoelectric plates. Chinese Quarterly of Mechanics, 2005, 26(4): 567-571. (in Chinese) 朱昊文, 李饶臣, 杨昌锦. 功能梯度压电材料板的有限元解. 力学季刊, 2005, 26(4): 567-571.
[7] Zhong Z, Wu L Z, Chen W Q. Progress in the study on mechanics problems of functionally graded materials and structures. Advances in Mechanics, 2010, 40(5): 528-541. (in Chinese) 仲政, 吴林志, 陈伟球. 功能梯度材料与结构的若干力学问题研究进展. 力学进展, 2010, 40(5): 528-541.
[8] Ferreira A J M, Batra R C, Roque C M C, et al. Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method. Composite Structures, 2005, 69(4): 449-457.
[9] Qian L F, Batra R C, Chen L M. Static and dynamic deformations of thick functionally graded elastic plate by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method. Composites Part B Engineering, 2004, 35(6-8): 685-697.
[10] Gu Y T, Ding H. Recent developments of meshless method. Advances in Mechanics, 2005, 35(3): 323-337. (in Chinese) 顾元通, 丁桦. 无网格法极其最新进展. 力学进展, 2005, 35(3): 323-337.
[11] Ng C F, Clevenson S A. High-intensity acoustic tests of a thermally stressed plate. Journal of Aircraft, 1991, 28(4): 275-281.
[12] Murphy K D, Virgin L N, Rizzi S A. Experimental snap-through boundaries for acoustically excited, thermally buckled plates. Experimental Mechanics, 1996, 34(4): 312-317.
[13] Murphy K D, Virgin L N, Rizzi S A. Charactering the dynamic response of a thermally loaded, acoustically excited plate. Journal of Sound and Vibration, 1996, 196(5): 635-658.
[14] Istenes R R, Rizzi S A, Wolfe H F. Experimental nonlinear random vibration results of thermally buckled composite panels. AIAA-1995-1345, 1995.
[15] Woo J, Meguid S A, Ong L S. Nonlinear free vibration behavior of functionally graded plates. Journal of Sound and Vibration, 2006, 289(3): 595-611.
[16] Parveen G N, Reddy J N. Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. International Journal of Solids Structures, 1998, 35(33): 4457-4476.
[17] Zhang W, Hao Y X, Guo X Y, et al. Complicated nonlinear responses of a simply supported FGM rectangular plate under combined parametric and external excitations. Meccanica, 2012, 47(4): 985-1014.
[18] Ibrahim H H, Yoo H H, Tawfik M, et al. Thermo-acoustic random response of temperature-dependent functionally graded material panels. Computation Mechanics, 2010, 46(3): 377-386.
[19] Hu Y Q, He E M, Zhang Z. Corrected trigonometric series method for time history simulation of sound pressure with band-limited white Gaussian noise. Aeronautical Computing Technique, 2012, 42(1): 35-38. (in Chinese) 胡亚琪, 贺尔铭, 张钊.限带高斯白噪声声压时程模拟的修正三角级数法. 航空计算技术, 2012, 42(1): 35-38.
文章导航

/