固体力学与飞行器总体设计

SUSAN角点检测和匹配算法在高温变形测量中的应用

  • 于合龙 ,
  • 苏恒强 ,
  • 汪岩 ,
  • 冯雪
展开
  • 1. 清华大学 航天航空学院, 北京 100084;
    2. 吉林农业大学 信息技术学院, 吉林 长春 130118
于合龙 男, 博士, 副教授。主要研究方向: 机器视觉, 实验力学。 Tel: 010-62781465 E-mail: yuhelong@yahoo.com.cn;冯雪 男, 博士, 教授。主要研究方向: 薄膜/界面力学、 柔性可延展电子器件、 极端复杂环境下实验力学、 航天航空热防护等。 Tel: 010-62781465 E-mail: fengxue@tsinghua.edu.cn

收稿日期: 2012-06-13

  修回日期: 2012-10-24

  网络出版日期: 2012-11-22

基金资助

国家自然科学基金(90816007, 91116006, 10902059)

Application of SUSAN Corner Detection and Matching Algorithm in High Temperature Deformation Measurement

  • YU Helong ,
  • SU Hengqiang ,
  • WANG Yan ,
  • FENG Xue
Expand
  • 1. School of Aerospace, Tsinghua University, Beijing 100084, China;
    2. College of Information Technology, Jilin Agricultural University, Changchun 130118, China

Received date: 2012-06-13

  Revised date: 2012-10-24

  Online published: 2012-11-22

Supported by

National Natural Science Foundation of China (90816007, 91116006, 10902059)

摘要

高温变形测量是材料力学性能实验方法研究中的重点和热点之一。为了能够实现在高温环境下精确地进行变形测量,将最小核值相似区(SUSAN)角点检测和光流跟踪匹配技术应用到位移和应变测量方面,设计了基于SUSAN角点特征的高温变形测量算法。该算法充分发挥了SUSAN角点特征的优点,具有测量精度高、抗干扰能力强等优点。在普通环境下,经过模拟散斑图数据的验证,利用该算法进行变形测量,误差在1%以内,精度高、稳定性好。通过高温力学实验发现,该算法能够适用于高温变形测量。本研究扩展了图像识别等技术在非接触测量技术中的应用。

本文引用格式

于合龙 , 苏恒强 , 汪岩 , 冯雪 . SUSAN角点检测和匹配算法在高温变形测量中的应用[J]. 航空学报, 2013 , 34(5) : 1064 -1072 . DOI: 10.7527/S1000-6893.2013.0195

Abstract

Deformation measurement at high temperatures is one of the hot and important issues in the study of the methods of mechanical properties experiments. In order to achieve accurate deformation measurements in a high temperature environment, this paper applies smallest univalue segment assimilating nucleus (SUSAN) corner detection and optical flow tracking matching techniques and proposes a method of high temperature deformation measurement based on SUSAN corner features. This method makes full use of the advantages of SUSAN corner features, and maintains the high accuracy, strong anti-interference ability, etc. By testing the simulated speckle images, the paper finds that the error is kept within 1%, and the algorithm has not only high accuracy, but also good stability. High temperature mechanics experiments show that this method can be applied to high temperature deformation measurements. This study extends the application of image recognition technology in the field of non-contact measurement technology.

参考文献

[1] Su H Q, Feng X, Yu H L. A new algorithm for displacement based on Harris corner detection. Journal of Experimental Mechanics, 2012, 27(1): 45-53. (in Chinese) 苏恒强, 冯雪, 于合龙. 基于Harris角点检测的位移测量算法. 实验力学, 2012, 27(1): 45-53.
[2] Chen R H, Wang L Z, Kong H L. Application of similar material simulating experiment based on DICM. Journal of Experimental Mechanics, 2007, 22(6): 605-611. (in Chinese) 陈荣华, 王路珍, 孔海陵. 数字图像相关法在相似材料模拟试验中的应用. 实验力学, 2007, 22(6): 605-611.
[3] Meng L B, Ma S P, Jin G C. On the performance of the subpixel displacement estimations used in digital speckle correlation method (DSCM). Journal of Experimental Mechanics, 2003, 18(3): 343-348. (in Chinese) 孟利波, 马少鹏, 金观昌. 数字散斑相关测量中亚像素位移测量方法的比较. 实验力学, 2003, 18(3): 343-348.
[4] Jin G C. Computer-aided optical metrology. Beijing: Tsinghua University Press, 2007: 141-183. (in Chinese) 金观昌. 计算机辅助光学测量. 北京: 清华大学出版社, 2007: 141-183.
[5] Dudescu C, Naumann J, Stockmann M, et al. Characterisation of thermal expansion coefficient of anisotropic materials by electronic speckle pattern interferometry. Strain, 2006, 42(3): 197-205.
[6] Lyons J S, Liu J, Sutton M A. High-temperature deformation measurements using digital-image correlation. Experimental Mechanics, 1996, 36(1): 64-70.
[7] Malmo J T, Jkberg O J, Slettemoen G A. Interferometric testing at very high temperatures by TV holography (ESPI). Experimental Mechanics, 1988, 28(3): 315-321.
[8] Wang G T. High temperature moire interferometry and itd application. Beijing: Tsinghua University, 1998. (in Chinese) 王国弢. 高温云纹干涉法及其应用. 北京: 清华大学, 1998.
[9] Dong X L, Feng X, Hwang K C, et al. Full field measurement of nonuniform stresses of thin films at high temperature. Optics Express, 2011, 19(14): 13201-13208.
[10] Smith S M, Brady J M. SUSAN — A new approach to low level image processing. International Journal of Computer Vision, 1997, 23(1): 45-78.
[11] Mao Y M, Lan M H. Research on corner detection methods. Modern Computer, 2008(10): 86-88. (in Chinese) 毛雁明, 兰美辉. 角点检测方法研究. 现代计算机: 专业版, 2008(10): 86-88.
[12] Zeng J, Li D H. SUSAN edge detection method for color image. Computer Engineer and Applicatins, 2011(15): 194-196. (in Chinese) 曾俊, 李德华. 彩色图像SUSAN边缘检测方法. 计算机工程与应用, 2011(15): 194-196.
[13] Wang W, Zhao H R. The improvement of SUSAN for image matching. Journal of Remote Sensing, 2011, 15(5): 940-956. (in Chinese) 王巍, 赵红蕊. 面向影像匹配的SUSAN角点检测. 遥感学报, 2011, 15(5): 940-956.
[14] Dan X, Yue X K. Image segmentations for space target based-on SUSAN algorithm. Science Technology and Engineering, 2011, 11(11): 2533-2536. (in Chinese) 淡雪, 岳晓奎. 基于SUSAN算法的空间目标分割算法. 科学技术与工程, 2011, 11(11): 2533-2536.
[15] Yang X F, Huang Y M, Li Y, et al. Sub-pixel corner detection algorithm of chessboard image based on improved SUSAN operator. China Mechanical Engineering, 2010, 21(21): 119-123. (in Chinese) 杨幸芳, 黄玉美, 李艳, 等. 基于改进的SUSAN算子的棋盘格亚像素角点检测算法. 中国机械工程, 2010, 21(21): 119-123.
[16] Horn B K P, Schunck B G. Determining optical flow. Artificial Intelligence, 1981, 17(10): 185-203.
[17] Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision. Proceedings of the 7th International Joint Conference on Artificial Intelligence, 1981: 674-679.
文章导航

/