固体力学与飞行器总体设计

考虑依赖性的多部件系统状态维修优化仿真建模

  • 葛小凯 ,
  • 胡剑波 ,
  • 张博锋
展开
  • 1. 空军工程大学 装备管理与安全工程学院, 陕西 西安 710051;
    2. 上海大学 计算机学院, 上海 200072;
    3. 中国人民解放军 93050部队, 辽宁 丹东 118008
葛小凯 男,博士研究生,工程师。主要研究方向:控制科学与工程、航空机载武器系统论证与综合保障。Tel:029-84789665 E-mail:wjzaixian1984@163.com;胡剑波 男,博士,教授,博士生导师。主要研究方向:先进控制理论与应用、飞行控制与装备信息化。Tel:029-84789665 E-mail:autosys@vip.sina.com;张博锋 男,博士,教授,博士生导师。主要研究方向:智能人机交互、人工智能与生物信息技术。Tel:029-84789665 E-mail:bfzhang@shu.edu.cn

收稿日期: 2012-10-08

  修回日期: 2012-11-09

  网络出版日期: 2012-11-20

基金资助

空军工程大学科研创新基金(XS1101020);上海市重点学科开放课题(J50103);工业控制技术国家重点实验室开放课题(ICT1327)

Simulation Modeling for Condition Based Maintenance Optimization of Multi-component Systems with Dependencies

  • GE Xiaokai ,
  • HU Jianbo ,
  • ZHANG Bofeng
Expand
  • 1. Equipment Management and Safety Engineering College, Air Force University of Engineering, Xi'an 710051, China;
    2. Computer College, Shanghai University, Shanghai 200072, China;
    3. Unit 93050 of PLA, Dandong 118008, China

Received date: 2012-10-08

  Revised date: 2012-11-09

  Online published: 2012-11-20

Supported by

Scientific Research Innovation Funds of Air Force University of Engineering (XS1101020);Shanghai Leading Academic Discipline Project (J50103);State Key Laboratory of Industrial Control Technology Open Issue (ICT1327)

摘要

针对多部件系统状态维修决策建模存在的不足以及现有模型难以推广到实际应用的问题,提出考虑经济、结构和随机3种依赖性的多部件系统仿真建模和优化方法。首先,利用Gamma退化过程对部件退化进行描述,并给出模型参数估计方法。然后,结合多部件系统的维修作业流程、组成关系和故障历史等信息,分别提出经济依赖性强度矩阵、结构依赖性可达矩阵和随机依赖性概率矩阵对3种依赖性进行建模。最后,同时考虑部件级和系统级决策,构建多部件系统期望周期费用仿真模型,并针对该仿真模型特点,提出了用单纯形算法(NMA)改进的遗传算法(GA)优化求解的过程。某电传系统实例仿真结果表明:多部件系统的3类依赖关系对维修决策的影响不可忽略,考虑依赖性和成组维修的存在能够节省平均维修费用,且使得维修决策优化更加符合实际,验证了所建模型和优化方法的有效性。

本文引用格式

葛小凯 , 胡剑波 , 张博锋 . 考虑依赖性的多部件系统状态维修优化仿真建模[J]. 航空学报, 2013 , 34(8) : 1854 -1863 . DOI: 10.7527/S1000-6893.2013.0321

Abstract

In view of the deficiencies of present condition based maintenance modeling methods of multi-component systems and their difficulty of practical application, this paper presents a simulation model and an optimization method for these systems with economic, structural and stochastic dependencies. First, a Gamma process and parameters estimation method is used to describe the degradation of components. Then, economic dependency strength matrix, structural dependency reachable matrix and stochastic dependence dependency probability matrix are constructed respectively to model these three dependencies based on maintenance workflow, composition relationships and fault information. Finally, considering decision variables of the system and unit level at the same time, a simulation model to obtain the expected cycle costs of the system is presented, and a genetic algorithm (GA) solving process improved by Nelder Mead algorithm (NMA) is given according to the characteristics of the model. Numerical simulation results of a wire flight control system pitching channel subsystem demonstrate that the influence of dependencies on maintenance decision cannot be neglected. Cost saving and decision optimization results are achieved when dependencies and multi-component group maintenance are considered, which verifies the effectiveness and practicability of the models and methods presented above.

参考文献

[1] Berg M. General trigger-off replacement procedures for two-unit systems. Naval Research Logistics Quarterly, 1978, 25(1): 15-29.
[2] Cho D I, Parlar M. A survey of maintenance models for multi-unit systems. European Journal of Operational Research, 1991, 51(1): 1-23.
[3] Dekker R. Applications of maintenance optimization models: a review and analysis. Reliability Engineering & System Safety, 1997, 51(3): 229-240.
[4] Nicolai R P, Dekker R. Optimal maintenance of multi-component systems: a review. London: Springer, 2008: 263-286.
[5] Sung H J. Optimal maintenance of a multi-unit system under dependences. Georgia: School of Aerospace Engineering, Georgia Institute of Technology, 2008.
[6] Cai J, Zuo H F, Wang H W. A study on preventive maintenance optimization model for multi-unit system. Systems Engineering-theory and Practice, 2007, 27 (2):133-138. (in Chinese) 蔡景, 左洪福, 王华伟. 多部件系统的预防性维修优化模型研究. 系统工程理论与实践, 2007, 27 (2): 133-138.
[7] Pham H, Wang H Z. Optimal opportunistic maintenance of a k-out-of n: G system with imperfect PM and partial failure. Naval Research Logistics, 2000, 47(3): 223-239.
[8] Vergin R C, Scriabin M. Maintenance scheduling for multi-component equipment. AIIE Transactions, 1977, 9(3): 297-305.
[9] Pham H, Wang H Z. A quasi-renewal process for software reliability and testing costs. IEEE Transactions on Systems, Man and Cybernetic, Part A: Systems and Humans, 2001, 31(6): 623-631.
[10] Gertsbakh I. Optimal dynamic opportunistic replacement with random resupply of spare parts. Communications in Statistics, Stochastic Models, 1989, 5(2): 315-326.
[11] Castanier B, Grall A, Berenguer C. A condition based maintenance policy with non-periodic inspections for a two-unit series system. Reliability Engineering and System Safety, 2005, 87(1): 109-120.
[12] Marseguerra M, Zio E, Podofillini L. Condition based maintenance optimization by means of genetic algorithms and Monte Carlo simulation. Reliability Engineering and System Safety, 2002, 77(2): 151-165.
[13] Albin S L, Chao S. Preventive replacement in systems with dependent components. IEEE Transactions on Reliability, 1992, 41(2): 230-238.
[14] Barbera F, Schneider H, Watson E. A condition based maintenance model for a two-unit series system. European Journal of Operational Research, 1999, 116(2): 281-290.
[15] Gurler U, Kaya A. Amaintenance policy for a system with multi-state components: an approximate solution. Reliability Engineering and System Safety, 2002, 76(2): 117-127.
[16] Wang H Z, Pham H. Reliability and optimal maintenance. London: Springer Series in Reliability Engineering Series, 2006: 171-203.
[17] van Noortwijk J M. A survey of the application of gamma processes in maintenance. Reliability Engineering & System Safety, 2009, 94(1): 2-21.
[18] Hirmer C M, Rboulet G, Sourget F, et al. Maintenance optimization for a system with a gamma deterioration process and intervention delay: application to track maintenance. Journal of Risk and Reliability, 2009, 223(3): 189-198.
[19] Yu Y L, Zhu X D, Hao J P. System maintainability modeling theory and method. Beijing: National Defense Industry Press, 2007: 40-50. (in Chinese) 于永利, 朱小冬, 郝建平. 系统维修性建模理论与方法. 北京: 国防工业出版社, 2007: 40-50.
[20] Wu B J. Fault diagnosis technology on flight control system of UAV. Xi'an: College of Automation, Northwestern Polytechnical University, 2007. (in Chinese) 武宝军. 无人机飞行控制系统故障检测技术研究. 西安: 西北工业大学自动化学院, 2007.
文章导航

/