电子与控制

基于周期FRFT的多分量LFMCW雷达信号分离

  • 黄宇 ,
  • 刘锋 ,
  • 王泽众 ,
  • 向崇文 ,
  • 邓兵
展开
  • 1. 海军航空工程学院 电子信息工程系, 山东 烟台 264001;
    2. 中国人民解放军 91635部队, 北京 102249
黄宇 男, 博士研究生。主要研究方向: 复杂调制信号截获、分选与识别。 Tel: 0535-6635821 E-mail: huangyu.yantai@163.com;刘锋 男, 博士, 教授, 博士生导师。主要研究方向: 综合电子战与网络对抗。 Tel: 0535-6635821 E-mail: fengliuhy@163.com

收稿日期: 2012-05-17

  修回日期: 2012-10-10

  网络出版日期: 2013-04-23

基金资助

国家自然科学基金(60902054);中国博士后科学基金(20090460114,201003758)

Periodic FRFT-based Multi-component LFMCW Radar Signal Separating

  • HUANG Yu ,
  • LIU Feng ,
  • WANG Zezhong ,
  • XIANG Chongwen ,
  • DENG Bing
Expand
  • 1. Department of Electronic Engineering, Naval Aeronautical Engineering Institute, Yantai 264001, China;
    2. No.91635 Unit, People's Liberation Army, Beijing 102249, China

Received date: 2012-05-17

  Revised date: 2012-10-10

  Online published: 2013-04-23

Supported by

National Natural Science Foundation of China (60902054); China Postdoctoral Science Foundation (20090460114, 201003758) *Corresponding author. Tel.: 0535-6635821 E-mail: fengliuhy@163.com

摘要

多分量线性调频连续波(LFMCW)信号的截获和特征提取是雷达情报侦察的难点,为了实现对多分量LFMCW信号的快速检测和有效分离,提出了一种基于周期分数阶Fourier变换(PFRFT)的多分量LFMCW雷达信号分离新方法。首先介绍了PFRFT,分析了PFRFT和FRFT之间的关系,讨论了LFMCW信号的PFRFT特征。然后给出了一种离散PFRFT的计算方法,结合周期分数阶Fourier域(PFRFD)的窄带滤波和CLEAN算法实现了多分量LFMCW信号的分离。仿真结果表明:①PFRFT的计算效率较周期Wigner-Hough变换(PWHT)具有明显优势;②LFMCW信号分量在特定PFRFD中具有能量峰值,分离后能较好保留时频特征;③当两个LFMCW信号分量的功率相差较大时,适合在PFRFD分离,反之适合在时域分离;④当信噪比(SNR)为0 dB时,两个具有相同功率的LFMCW信号分量分离后,与初始信号分量的相关系数都达到了0.9以上。

本文引用格式

黄宇 , 刘锋 , 王泽众 , 向崇文 , 邓兵 . 基于周期FRFT的多分量LFMCW雷达信号分离[J]. 航空学报, 2013 , 34(4) : 846 -854 . DOI: 10.7527/S1000-6893.2013.0145

Abstract

The interception and feature extraction of multi-component linear frequency modulation continuous waveform (LFMCW) signals is difficult to perform for a radar intelligence reconnaissance system. In order to fast detect and efficiently separate multi-component LFMCW radar signals, a novel method is presented. First, with the introduction of periodic fractional Fourier transform (PFRFT), the relationship between PFRFT and FRFT is analyzed, and the PFRFT of a LFMCW signal is discussed. Then, a numerical computation method of discrete PFRFT is given, and the separation of the multi-component LFMCW signals is realized by narrowband filtering on the periodic fractional Fourier domain (PFRFD) with CLEAN. Finally, simulation results show several conclusions: (a) the computation efficiency of PFRFT outperforms periodic Wigner-Hough transform (PWHT); (b) the LFMCW signal component has energy peak on a certain PFRFD and preserves its time-frequency characteristic after separating; (c) when the powers of two LFMCW signals are widely different, it is efficient to separate on the PFRFD, otherwise separation on the time domain is better; (d) when the two LFMCW signal components have similar powers and the signal noise ratio (SNR) is 0 dB, the correlation coefficients between the separated and original LFMCW signal components are both greater than 0.9.

参考文献

[1] Muoz-Ferraras J, Perez-Martinez F, Burgos-Garcia M. Helicopter classification with a high resolution LFMCW radar. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(4): 1373-1384.

[2] Gonzalez-Partida J T, Almorox-Gonzalez P, Burgos-Garcia M, et al. Through-the-wall surveillance with millimeter-wave LFMCW radars. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1796-1805.

[3] Pace P E. Detecting and classifying low probability of intercept radar. 2rd ed. Massachusetts: Artech House, 2009: 31-37.

[4] Barbarossa S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform. IEEE Transactions on Signal Processing, 1995, 43(6): 1511-1515.

[5] Guo Q, Li Y J, Wang C H, et al. Novel detection method for multi-component LFM signals. First International Conference on Pervasive Computing Signal Processing and Applications, 2010: 759-762.

[6] Liu F, Sun D P, Tao R, et al. Multi-component LFM signal feature extraction based on improved Wigner-Hough transform. 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008: 1-4.

[7] Yuan Y, Fu Y, Li Q F. Detection and parameter estimation of multicomponent LFM signals based on Hilbert-Huang Hough transform. Asia-Pacific Conference on Computational Intelligence and Industrial Applications (PACIIA 2009), 2009(1): 476-479.

[8] Cowell D M J, Freear S. Separation of overlapping linear frequency modulated (LFM) signals using the fractional Fourier transform. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2010, 57(10): 2324-2333.

[9] Qi L, Tao R, Zhou S Y, et al. Detection and parameter estimation of multicomponent LFM signals based on the fractional Fourier transform. Science in China Series F: Information Sciences, 2004, 47(2): 184-198.

[10] Liu F, Xu H F, Sun D P, et al. Feature extraction of symmetrical triangular LFMCW signal using Wigner-Hough transform. Journal of Beijing Institute of Technology, 2009, 18(4): 478-483.

[11] Liu F, Xu H F, Tao R. Detection and parameter estimation of symmetrical triangular LFMCW signal based on fractional Fourier transform. Journal of Electronics & Information Technology, 2011, 33(8): 1864-1870. (in Chinese) 刘锋, 徐会法, 陶然. 基于FRFT的对称三角线性调频连续波信号检测与参数估计. 电子与信息学报, 2011, 33(8): 1864-1870.

[12] Millioz F, Davies M. Sparse detection in the chirplet transform: application to FMCW radar signals. IEEE Transactions on Signal Processing, 2012, 60(6): 2800- 2813.

[13] Geroleo F G, Brandt-Pearce M. Detection and estimation of multi-pulse LFMCW radar signals. 2010 IEEE Radar Conference, 2010: 1009-1013.

[14] Geroleo F G, Brandt-Pearce M. Detection and estimation of LFMCW radar signals. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 405-418.

[15] Wang Z Z. Interception and waveform recognition of a kind of continuous wave radars signals based on periodic WHT. Yantai: Naval Aeronautical Engineering Institute, 2012. (in Chinese) 王泽众. 基于周期WHT的一类连续波雷达信号截获与波形识别. 烟台: 海军航空工程学院, 2012.

[16] Tao R, Deng B, Wang Y. Fractional Fourier transform and its applications. Beijing: Tsinghua University Press, 2009: 12-26. (in Chinese) 陶然, 邓兵, 王越. 分数阶傅里叶变换及其应用. 北京: 清华大学出版社, 2009: 12-26.

[17] Liu F, Xu H F, Tao R, et al. Research on resolution among multi-component LFM signals in the fractional Fourier domain. Science China Information Sciences, 2012, 55(6): 1301-1312.

[18] Deng B, Tao R, Qu C W. Analysis of the shading between multicomponent chirp signals in the fractional Fourier domain. Acta Electronica Sinica, 2007, 35(6): 1095-1098. (in Chinese) 邓兵, 陶然, 曲长文. 分数阶Fourier域中多分量chirp信号的遮蔽分析. 电子学报, 2007, 35(6): 1095-1098.

[19] Bultheel A. A two-phase implementation of the fractional Fourier transform. Report TW 588, 2011: 1-11.

[20] Zhao X H, Deng B, Tao R. Dimensional normalization in the digital computation of the fractional Fourier transform. Transactions of Beijing Institute of Technology, 2005, 25(4): 361-364. (in Chinese) 赵兴浩, 邓兵, 陶然. 分数阶傅立叶变换数值计算中的量纲归一化. 北京理工大学学报, 2005, 25(4): 361-364.

文章导航

/