固体力学与飞行器总体设计

中短程客机总体参数敏感性分析

  • 张帅 ,
  • 余雄庆
展开
  • 南京航空航天大学 航空宇航学院, 江苏 南京 210016
张帅 男, 博士研究生。主要研究方向: 飞行器总体设计。 E-mail: zhangshuai@nuaa.edu.cn;余雄庆 男, 博士, 教授, 博士生导师。主要研究方向: 飞行器总体设计, 多学科设计优化。 Tel: 025-84892102 E-mail: yxq@nuaa.edu.cn

收稿日期: 2012-05-29

  修回日期: 2012-10-18

  网络出版日期: 2013-04-23

基金资助

南京航空航天大学科研创新基金(NJ2011002)

Sensitivity Analysis of Primary Parameters in Preliminary Design of a Short/Medium-haul Airliner

  • ZHANG Shuai ,
  • YU Xiongqing
Expand
  • College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2012-05-29

  Revised date: 2012-10-18

  Online published: 2013-04-23

Supported by

NUAA Research Funding for Innovation (NJ2011002)

摘要

总体参数敏感性分析是确定客机总体参数的主要依据之一。以中短程客机作为背景机型,在开发了客机总体设计综合分析程序的基础上,首先应用优化方法确定出初步的总体参数,然后以此参数为基准点,着重分析总体参数对客机性能的影响,包括:机翼面积对质量和直接运营成本(DOC)的影响;组合参数(机翼面积与展弦比、机翼面积与后掠角)对质量的影响;发动机推力和机翼小翼的选装对起降性能和设计燃油质量的影响;组合参数(机翼面积与襟翼类型)对起降性能的影响;机身加长对起降性能和设计燃油质量的影响。最后将总体参数敏感性分析的结果以趋势图和地毯图的形式给出,可直观地洞察总体参数对性能指标的影响,为总体参数的调整和最终确定提供依据。

本文引用格式

张帅 , 余雄庆 . 中短程客机总体参数敏感性分析[J]. 航空学报, 2013 , 34(4) : 809 -816 . DOI: 10.7527/S1000-6893.2013.0140

Abstract

The determination of primary parameters in preliminary design is usually based on the sensitivity analysis of these parameters. This paper investigates the parameter sensitivity analysis for the preliminary design of a short/medium-haul airliner. A synthesis program for the preliminary design of civil jets is developed for use by the optimization and sensitivity analysis. The values of the primary parameters of the baseline design are found by optimization method. Based on the baseline design, the sensitivity analysis of primary parameters is investigated in detail, which includes the effects of wing areas on takeoff mass, fuel mass and direct operating costs (DOC), effects of multiple parameters (wing areas and aspect ratios, wing areas and sweep) on takeoff mass and fuel mass, effects of thrust of engines and winglet on the takeoff-landing performance and designed fuel mass, effects of wing area and flap types on the takeoff-landing performance, effects of fuselage stretch on the takeoff-landing performance and designed fuel mass. The results of the sensitivity analysis are presented in trend plots and carpet plots, from which the effects of primary parameters on the performances can be perceived directly. These results can guide designers to find more reasonable designs and make a final decision on the values of the primary parameters in preliminary design.

参考文献

[1] Jenkinson L R. Regional fanjet aircraft optimization studies. Journal of Aircraft, 1993, 30(2): 168-177.

[2] Jenkinson L R, Simpkin P, Rhodes D. Civil jet aircraft design. London: Arnold, 1999: 327-334.

[3] Raymer D P. Aircraft design: a conceptual approach. Reston: AIAA Inc., 1999: 603-616.

[4] Wang Y, Yu X Q. An optimization method for aircraft conceptual design under uncertainty. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1883-1888. (in Chinese) 王宇, 余雄庆. 考虑不确定性的飞机总体参数优化方法. 航空学报, 2009, 30(10): 1883-1888.

[5] Isikveren A T. Quasi-analytical modelling and optimisation techniques for transport aircraft design. Stockholm (Sweden): Royal Institute of Technology (KTH), 2002.

[6] Howe D. Aircraft conceptual design synthesis. London and Bury St Edmunds: Professional Engineering Publishing Ltd., 2000.

[7] Feagin R C, Morrison W D. Delta method, an empirical drag buildup technique. NASA CR-151971, 1978.

[8] Roskam J. Airplane design: Part 6. Ottawa, Kansas: Roskam Aviation and Engineering Corporation, 1985.

[9] Zhang S. Rapid evaluation for the stability and control of the aircraft and its application in aircraft design. Nanjing: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 2008. (in Chinese) 张帅. 操稳特性快速评估及其在飞机设计中的应用. 南京: 南京航空航天大学航空宇航学院, 2008.

[10] Kroo I. Aircraft design: synthesis and analysis. Stanford, CA: Desktop Aeronautics, Inc., 1997. (2006-09-01) . http://adg.stanford.edu/aa241/.

[11] Chai S, Crisafulli P, Mason W H. Aircraft center of gravity estimation in conceptual/preliminary design. AIAA-1995-3882, 1995.

[12] van Bodegraven G W. Commercial aircraft DOC methods. AIAA-1990-3224, 1990.

[13] Meng W G, Ma D L, Chu L. Wing aerodynamic robustness optimization based on neural network response surface. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1134-1140. (in Chinese) 蒙文巩, 马东立, 楚亮. 基于神经网络响应面的机翼气动稳健性优化设计. 航空学报, 2010, 31(6): 1134-1140.

[14] Simos D, Jenkinson L R. The determination of optimum flight profiles for short haul routes. Journal of Aircraft, 1985, 22(8): 669-674.

[15] Simos D, Jenkinson L R. Optimisation of the conceptual design and mission profiles of short-haul aircraft. Journal of Aircraft, 1988, 25(7): 618-624.

[16] Caves B E, Jenkinson L R, Rhodes D P. Adapting civil aircraft conceptual design methods to account for broader based constraints. AIAA-1997-5595, 1997.

文章导航

/