电子与控制

基于声矢量传感器阵列的鲁棒H空气流动 速度估计算法

  • 陈诚 ,
  • 陶建武
展开
  • 空军航空大学 飞行器控制工程系, 吉林 长春 130022
陈诚,男,硕士研究生。主要研究方向:阵列信号处理及应用。Tel:0431-8695952,E-mail:wsccandy@gmail.com;陶建武,男,博士,教授,博士生导师。主要研究方向:阵列信号处理及应用,矢量传感器信号处理等。Tel:0431-8695952,E-mail:jianwu.tao@gmail.com

收稿日期: 2012-01-17

  修回日期: 2012-05-02

  网络出版日期: 2012-10-27

基金资助

国家自然科学基金(61172126)

Robust H Estimation of Airspeed Based on Acoustic Vector Sensor Array

  • CHEN Cheng ,
  • TAO Jianwu
Expand
  • Department of Aircraft Control Engineering, Aviation University of Air Force, Changchun 130022, China

Received date: 2012-01-17

  Revised date: 2012-05-02

  Online published: 2012-10-27

Supported by

National Natural Science Foundation of China (61172126)

摘要

研究了基于声矢量传感器阵列的空气流动速度测量问题。首先,根据声波在气流中的传播原理,求得声场中质点振速与空气流动速度的关系表达式,建立基于声矢量传感器线性阵列的测量模型。在此基础上,根据各个阵元输出信号之间的相位差,提出了基于鲁棒H滤波的空气流动速度估计算法,该算法通过各个阵元的信息迭代估计出空气流动速度。然后从理论上讨论了算法的初值选取,并分析了算法对随机扰动的鲁棒性。最后,计算机仿真表明该算法具有良好的鲁棒性和容错性。

本文引用格式

陈诚 , 陶建武 . 基于声矢量传感器阵列的鲁棒H空气流动 速度估计算法[J]. 航空学报, 2013 , 34(2) : 361 -370 . DOI: 10.7527/S1000-6893.2013.0041

Abstract

The measurement of airspeed based on an acoustic vector sensor array is studied in this paper. According to the propagation principle of acoustic waves in an air current, the relationships between particle velocity and air current velocity are first derived and a measurement model based on a linear acoustic vector sensor array is built. Then a novel approach for estimating airspeeds based on the robust H filter is proposed. By the phase lag between each sensor, the proposed algorithm is implemented as an iteration to estimate the airspeed. The selection of system initial parameters is discussed and the robustness against system perturbation is analyzed in theory. Finally, simulation results show that the proposed approach has excellent robustness and toleration of sensor failures.

参考文献

[1] Whitmore S A, Cobleigh B R, Haering E A. Design and calibration of the X-33 flush airdata sensing (FADS) system. NASA/TM-1998-206540, 1998.

[2] Baumann E, Pahle J W, Davis M C, et al. X-43A flush airdata sensing system flight-test results. Journal of Spacecraft and Rockets, 2010, 47(1): 48-61.

[3] Ellsworth J C, Whitmore S A. Simulation of a flush air-data system for transatmospheric vehicles. Journal of Spacecraft and Rockets, 2008, 45(4): 716-732.

[4] Ellsworth J C. An analytical explanation for the X-43A flush air data sensing system pressure mismatch between flight and theory. AIAA-2010-4964, 2010.

[5] Weiss S. Comparing three algorithms for modeling flush airdata system. AIAA-2002-0535, 2002.

[6] Song X Y, Lu Y P. Flush airdata sensing and its calibration. Journal of Applied Sciences, 2008, 26(3): 301-306. (in Chinese) 宋秀毅, 陆宇平. 嵌入式大气数据传感系统及其校正. 应用科学学报, 2008, 26(3): 301-306.

[7] Wen R H, Zheng S D, Ye W. Development and current situation of flush air data sensing technologies. Electronics Optics & Control, 2008, 15(8): 53-56. (in Chinese) 温瑞珩, 郑守铎, 叶玮. 嵌入式大气数据传感技术的发展现状. 电光与控制, 2008, 15(8): 53-56.

[8] Rohloff T J. Development and evaluation of neural network flush air data sensing systems. Los Angles: University of California, 1998.

[9] Zhang B, Yu S L. Network algorithm for flush airdata sensing system. Acta Aeronautica et Astronautica Sinica, 2006, 27(2): 294-298. (in Chinese) 张斌, 于盛林. 嵌入式飞行参数传感系统的神经网络算法. 航空学报, 2006, 27(2): 294-298.

[10] Yang Z H, Shen Z J. Primary analysis of key technology on airdata sensing system for hypersonic vehicle. Control Technology of Tactical Missile, 2009, 31(1): 14-17. (in Chinese) 杨志红, 沈作军. 高超声速飞行器大气数据传感系统关键技术初步分析. 战术导弹控制技术, 2009, 31(1): 14-17.

[11] Yang Y, Lu Y P, Wu Z G. Combination filter technology in flush airdata sensing system. Transducer and Microsystem Technologies, 2009, 28(5): 117-120.(in Chinese) 杨雨, 陆宇平, 吴在桂. 嵌入式大气数据传感系统中的组合滤波技术. 传感器与微系统, 2009, 28(5): 117-120.

[12] Zheng C J, Lu Y P, He Z. Improved algorithms for flush airdata sensing system. Chinses Journal of Aeronautics, 2006, 19(4): 334-339.

[13] Shao X J, Yu S L, Zhang B. Application of Kalman algorithm in flush airdata sensing system. Measurement & Control Technology, 2005, 24(1): 70-72. (in Chinese) 邵笑杰, 于盛林, 张斌. 卡尔曼滤波在嵌入式飞行数据传感系统中的运用. 测控技术, 2005, 24(1): 70-72.

[14] Sun G Q, Li Q H. Progress of study on acoustic vector sensor. Acta Acustica, 2004, 29(6): 481-490. (in Chinese) 孙贵青, 李启虎. 声矢量传感器研究进展. 声学学报, 2004, 29(6): 481-490.

[15] Hui J Y, Hui J. Foundation of signal processing of acoustic vector sensor. Beijing: National Defense Industry Press, 2009: 3-23. (in Chinese) 惠俊英, 慧娟. 矢量声信号处理基础. 北京: 国防工业出版社, 2009: 3-23.

[16] Ma D Y. Foundation of acoustics theory. Beijing: Science Press, 2004: 10-25. (in Chinese) 马大猷. 现代声学理论基础. 北京: 科学出版社, 2004: 10-25.

[17] Yang X R, Chen Y. Atmospheric acoustic. Beijing: Science Press, 2007: 180-190. (in Chinese) 杨训仁, 陈宇. 大气声学. 北京: 科学出版社, 2007: 180-190.

[18] Wang L X, Tao J W. A new measuring airdata algorithm. Acta Metrologica Sinica, 2011, 32(1): 31-35. (in Chinese) 王立新, 陶建武. 一种新型的大气数据测量方法. 计量学报, 2011, 32(1): 31-35.

[19] Wang L X, Tao J W, Guo W. Measurement of airdata based on acoustic vector sensor. 2009 Civil Aviation Administration of China, 2009: 1-3. (in Chinese) 王立新, 陶建武, 郭伟. 基于矢量传感器的大气数据测量方法. 2009中国自动化暨两化融合高峰会议, 2009: 1-3.

[20] Wang Q, Li M K. Analytical solutions for outdoor sound propagation in the presence of wind. Journal of the Acoustical Society of America, 1997, 102(4): 2040-2049.

[21] Salomons E M. Computational atmospheric acoustic. London: Kluwer Academic Publishers, 2001: 124-132.

[22] Lockwood M L, Jones D L. Beamformer performance with acoustic vector sensors in air. Journal of the Acoustical Society of America, 2006, 119(1): 608-619.

[23] O’Brien R T, Kiriakidis K. Single-snapshot robust direction finding. IEEE Transactions on Signal Processing, 2005, 53(6): 1964-1978.

[24] Rawson J, Hsu C, Rho H. Reduced order H filters for discrete linear systems. Proceeds of IEEE Conference on Decision and Control, 1997: 3311-3316.

[25] Chen C, Tao J W. Estimation of airspeed for near-field based on acoustic vector-sensor array. 2012 Second International Conference on Electric Information and Control Engineering, 2012: 4593-4597.

[26] Cobleigh B R, Whitmore S A, Haering E A, et al. Flush airdata sensing (FADS) system calibration procedures and results for blunt forebodies. NASA/TP-1999-209012, 1999.

文章导航

/