电子与控制

基于贝叶斯模型的长码DS-CDMA信号扩频码与信息序列联合估计

  • 张立民 ,
  • 钟兆根 ,
  • 武恒州
展开
  • 1. 海军航空工程学院 电子信息工程系, 山东 烟台 264001;
    2. 海军驻沈阳地区航空军事代表室, 辽宁 沈阳 110034
张立民 男, 博士, 教授, 博士生导师。主要研究方向: 卫星信号处理、 武器系统仿真等。 Tel: 0535-6635402 E-mail: iamzlm@163.com;钟兆根 男, 博士研究生。主要研究方向: 通信侦察和空间信息对抗。 Tel: 0535-6635887 E-mail: zhongzhaogen@163.com;武恒州 男, 硕士, 工程师。主要研究方向: 航空武器装备仿真。 Tel: 010-66950748 E-mail: wuhengzhou2005@163.com

收稿日期: 2012-06-04

  修回日期: 2012-10-10

  网络出版日期: 2012-10-25

基金资助

国家自然科学基金(60972159,61102167);航空科学基金(20085184003)

Joint Estimation of Spreading Codes and Information Sequences for Long Code DS-CDMA Signals Based on Bayesian Model

  • ZHANG Limin ,
  • ZHONG Zhaogen ,
  • WU Hengzhou
Expand
  • 1. Department of Electronics and Information Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China;
    2. Naval Aviation Military Representative Office in Shenyang, Shenyang 110034, China

Received date: 2012-06-04

  Revised date: 2012-10-10

  Online published: 2012-10-25

Supported by

National Natural Science Foundation of China (60972159,61102167); Aeronautical Science Foundation of China (20085184003)

摘要

针对长码直接序列扩频码分多址(DS-CDMA)信号的盲解扩,在信号模型分析的基础上,提出了一种基于可逆跳跃的马尔可夫链蒙特卡罗(RJ-MCMC)扩频码和信息序列联合估计算法。该算法分别对建立的联合后验分布模型进行迭代抽样,并有效地在不同维数的子空间中跳转,从而构造一条马尔可夫链,使其平稳分布为待估参数的后验分布,最终拼接得到每个用户的完整扩频序列和信息序列估计。仿真结果表明:该方法在迭代二十几步时达到收敛;并且在功率相同和不同条件下,当信噪比(SNR)大于-9 dB时,估计序列与真实序列的相似度均超过0.95,信息序列的误码率低于0.01;同时算法对不同用户个数和不同调制样式具有较强的适应性,与Fast-ICA算法相比,估计性能平均提高了约3 dB。

本文引用格式

张立民 , 钟兆根 , 武恒州 . 基于贝叶斯模型的长码DS-CDMA信号扩频码与信息序列联合估计[J]. 航空学报, 2013 , 34(5) : 1191 -1203 . DOI: 10.7527/S1000-6893.2013.0205

Abstract

To deal with the blind dispreading of long code direct-sequence code division multiple access (DS-CDMA) signals, this paper introduces an algorithm for joint spreading codes and information sequences estimation based on reversible jump Markov chain Monte Carlo (RJ-MCMC) by analyzing a signal model. The proposed algorithm analyzes and processes the signal models separately, and obtains the samples of distribution to be estimated through iterative sampling. It is able to construct a reversible Markov chain sampler that jumps between parameter subspaces of different dimensionality, so that the posterior distribution of parameters to be estimated is obtained. Finally, it estimates the entire spreading code and information sequence of each user by splicing. The simulation shows that the iteration converges after some twenty steps. Regardless of whether the power is equal or unequal, when the signal-to-noise ratio (SNR) is greater than -9 dB, the similarity degree between the estimated sequence and true sequence exceeds 0.95, with the bit error rate of information sequence less than 0.01. In addition, the algorithm has good adaptability for different number of users and different modulation styles. Compared with the fast-ICA algorithm, this algorithm improves the estimation performance by an average of about 3 dB.

参考文献

[1] Joutsensalo J. Semi-blind CDMA code estimation in the downlink. The 48th IEEE Vehicular Technology Conference, 1998: 1356-1360.
[2] Haghighat A, Soleymani M R. A MUSIC-based algorithm for spreading sequence discovery in multiuser DS-CDMA. The 58th IEEE Vehicular Technology Conference, 2003: 978-981.
[3] Haghighat A, Soleymani M R. A MUSIC-based algorithm for blind user identification in multiuser DS-CDMA. EURASIP Journal on Applied Signal Processing, 2005, 5: 649-657.
[4] Qiu P Y, Huang Z T, Jiang W L, et al. Improved blind-spreading sequence estimation algorithm for direct sequence spread spectrum signals. IET Signal Processing, 2008, 2(2): 139-146.
[5] Qiu P Y, Huang Z T, Jiang W L, et al. Blind multiuser spreading sequences estimation algorithm for the direct-sequence code division multiple access signals. IET Signal Processing, 2010, 4(5): 465-478.
[6] de Lamare R C, Sampaio-Neto R. Blind space-time joint channel and direction of arrival estimation for DS-CDMA systems. IET Signal Processing, 2011, 5(1): 33-39.
[7] Sidiropoulos N D, Giannakis G B, Bro R. Blind PARAFAC receivers for DS-CDMA systems. IEEE Transactions on Signal Processing, 2000, 48(3): 810-823.
[8] Ren X T, Xu H, Huang Z T, et al. Fast-ICA based blind estimation of the spreading sequence for down-link multi-rate DS-CDMA signals. The 5th International Conference on Intelligent Computation Technology and Automation, 2012: 501-504.
[9] Peng Y H, Tang B, Lu M. Fast method for spreading sequence estimation of DSSS signal based on maximum likelihood function. Journal of Systems Engineering and Electronics, 2010, 21(6): 948-953.
[10] Lu F B, Huang Z T, Jiang W L. Bling estimation of spreading sequence of CDMA signals based on Fast-ICA and performance analysis. Journal on Communications, 2011, 32(8): 136-142. (in Chinese) 陆凤波, 黄知涛, 姜文利. 基于Fast-ICA的CDMA信号扩频序列盲估计及性能分析. 通信学报, 2011, 32(8): 136-142.
[11] Bentrcia A, Zerguine A, Benyoucef M. A reduced complexity chip-level SOR-SIC multiuser detector for long-code CDMA systems. The 4th International Conference on Signal Processing and Communication Systems, 2010: 1-4.
[12] De P. A novel computationally efficient algorithm for multiuser detection in long code CDMA system. IEEE Transactions on Vehicular Technology, 2012, 61(5): 2360-2368.
[13] Buzzi S, Massaro V. Parameter estimation and multiuser detection for bandlimited long code CDMA systems. IEEE Transactions on Wireless Communications, 2008, 7(6): 2307-2317.
[14] Chien F T, Hwang C H, Kuo C C J. Analysis of asynchronous long-code multicarrier CDMA systems with correlated fading. IEEE Transactions on Communications, 2005, 53(4): 666-676.
[15] Hill D A, Bodie J B. Carrier detection of PSK signals. IEEE Transactions on Communication, 2001, 49(3): 487-496.
[16] Lim D. A modified gardner detector for symbol timing recovery of M-PSK signals. IEEE Transactions on Communication, 2004, 52(10): 1643-1647.
[17] Wang X, Chen R. Adaptive Bayesian multiuser detection for synchronous CDMA with Gaussian and impulsive noise. IEEE Transactions on Signal Processing, 2000, 48(7): 2013-2028.
[18] Andrieu C, de Freitas J F G, Doucet A. Robust full Bayesian learning for neural networks. Cambridge: University of Cambridge, 1999.
文章导航

/