流体力学与飞行力学

平流层飞艇环境适应性评价模型

  • 张礼学 ,
  • 王中伟
展开
  • 国防科学技术大学 航天与材料工程学院, 湖南 长沙 410073
张礼学 男, 博士研究生。主要研究方向: 临近空间飞行器性能评估。 Tel: 0731-84576482 E-mail: zhanglixue1014@163.com;王中伟 男, 博士, 教授, 博士生导师。主要研究方向: 飞行器总体设计与论证评估。 Tel: 0731-84576482 E-mail: wang_zhwei2001@163.com

收稿日期: 2012-05-28

  修回日期: 2012-09-03

  网络出版日期: 2013-04-23

基金资助

国防预研项目(GFZX0402XX01)

Environmental Adaptability Evaluation Model for Stratospheric Airships

  • ZHANG Lixue ,
  • WANG Zhongwei
Expand
  • College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073, China

Received date: 2012-05-28

  Revised date: 2012-09-03

  Online published: 2013-04-23

Supported by

National Defence Pre-research Foundation (GFZX0402XX01)

摘要

阐述了平流层特别是20 km高度左右平流层的环境特点,分析了各种环境因素对长期在此空域中驻留飞行的平流层飞艇性能的影响,在此基础上,建立了平流层飞艇环境适应性评价指标体系。并针对其各评价指标的物理意义不同且数量级相差较大的特点提出了基于物理规划和层次分析法相结合的综合评价模型。算例和分析结论表明:抗风速度余量和产生消耗能量比在平流层飞艇对其飞行环境的适应能力评价中占有重要比重,应成为飞艇总体方案设计和论证时的重点关注指标。

本文引用格式

张礼学 , 王中伟 . 平流层飞艇环境适应性评价模型[J]. 航空学报, 2013 , 34(4) : 719 -726 . DOI: 10.7527/S1000-6893.2013.0131

Abstract

In this paper, the environmental characteristics of the stratosphere, especially the 20 km height stratosphere, is described, and the influence of diversified environmental factor to performance of stratospheric airships which should have the ability that reside there for a long time is analyzed. On this basis, a stratospheric airship environmental adaptability evaluation index system is developed. In view of the large differences existing in the magnitude and physical meaning of the attribute indices about stratospheric airships' conceptual design performance evaluation, a comprehensive evaluation model which combines physical programming and analytic hierarchy process is proposed. Finally, a real example is provided. The example and analysis of the results show that resisting wind speed allowance and energy generation exhaust ratio play a crucial role in the environmental adaptability capacity evaluation of stratospheric airships. They should receive more attention during airship conceptual design and argumentation.

参考文献

[1] Zhao Z L, Wang X Q, Du S Y. Review of research on gas retention layer material for stratospheric airship envelope and helium permeation in polymers.Acta Aeronautica et Astronautica Sinica,2009,30(9): 1761-1767. (in Chinese) 赵臻璐, 王小群, 杜善义. 平流层飞艇囊体气密层材料及氦气透过聚合物研究现状. 航空学报, 2009, 30(9): 1761-1767.

[2] Khoury G A, Gillett J D. Airship technology. Cambridge: Cambridge University Press, 1999: 1-10.

[3] Zhu Y C, Chang W J, Fu Y. Environmental suitability of weapons and environmental engineering. Equipment Environmental Engineering, 2005, 2(1): 14-19. (in Chinese) 祝耀昌, 常文君, 傅耘. 武器装备环境适应性与环境工程. 装备环境工程, 2005, 2(1): 14-19.

[4] Li S L, Yang S, Sun D. Evaluation model of environmental worthiness for military aircraft. Acta Aeronautica et Astronautica Sinica, 2009,30(6): 1053-1057. (in Chinese) 李曙林, 杨森, 孙冬. 军用飞机环境适应性评价模型. 航空学报, 2009, 30(6): 1053-1057.

[5] Qu X Y, Deng L. Analysis of the environmental worthiness of shipborne weapons in marine environment. Ship Electronic Engineering, 2011, 31(4): 138-146. (in Chinese) 曲晓燕, 邓力. 舰载武器海洋环境适应性分析. 舰船电子工程, 2011, 31(4): 138-146.

[6] Anthony C. Initial feasibility assessment of a high altitude long endurance airship. NASA CR-212724, 2003.

[7] Chen Q, Zhu M, Sun K W. Analysis to effects on conceptual parameters of stratospheric airship with specified factors. Journal of Computers, 2011, 6(5): 1055-1062.

[8] Joseph B M, Zhao Y Y, William L G. Optimal ascent trajectories for stratospheric airships using wind energy. Journal of Guidance Control and Dynamics, 2009, 32(9): 1232-1245.

[9] David K S, James S, Jason R. Near-space station keeping performance of a large high-altitude notional airship. Journal of Aircraft, 2007, 44(2): 611-615.

[10] Ma W, Xuan Y M, Han Y G. Thermal environment analysis and thermal design principle of stratospheric vehicles. Journal of Astronautic, 2010, 31(5): 1272-1277. (in Chinese) 马伟, 宣益民, 韩玉阁. 临近空间热环境分析及低速飞行器的热设计方法. 宇航学报, 2010, 31(5): 1272-1277.

[11] Yang B, Yang J. Analysis of the operating environment of near-space airship and its effects. 2008 Aerostat Conference Proceeding. Beijing: Institute of Electronics, Chinese Academy of Sciences, 2008: 395-398. (in Chinese) 杨秉, 杨健. 临近空间飞艇运行环境及其影响分析. 2008年中国浮空器大会论文集. 北京: 中国科学电子学研究所, 2008: 395-398.

[12] Yao W, Li Y, Zheng W, et al. Analysis of flight temperature limits and flight velocity limits for stratospheric airship. Journal of Astronautic, 2011, 32(6): 1239-1243. (in Chinese) 姚伟, 李勇, 郑威, 等. 平流层飞艇飞行温度限和飞行速度限分析. 宇航学报, 2011, 32(6): 1239-1243.

[13] Zhang Z Q, Xu B, He Y L, et al. Engine performance evaluation based on analytic hierarchy process.Acta Armamentari, 2008, 29(5): 625-628.(in Chinese) 张志强, 徐斌, 何勇灵, 等. 基于AHP评价方法的发动机性能评价. 兵工学报, 2008, 29(5): 625-628.

[14] Chen Y, Chen X K, Lin Y. Application of improved radar chart evaluation method on evaluation of automobile comprehensive performances. Journal of Jilin University, 2011, 41(6): 1522-1526. (in Chinese) 陈勇, 陈潇凯, 林逸. 改进雷达图评价方法在汽车综合性能评价中的应用. 吉林大学学报, 2011, 41(6): 1522-1526.

[15] Xue L H, Huang H Z, Zhang X, et al. Study of model for linear physical programming-based evaluation and decision-making of conceptual design schemes. Journal of Dalian University of Technology, 2005, 45(4): 562-567. (in Chinese) 薛立华, 黄洪钟, 张旭, 等. 概念设计方案评价和决策线性物理规划模型研究. 大连理工大学学报, 2005, 45(4): 562-567.

[16] Wang Y L, Li W J. Physical programming and its application in aircraft concept design. Acta Aeronautica et Astronautica Sinica, 2005, 26(5): 562-566. (in Chinese) 王允良, 李为吉. 物理规划方法及其在飞机方案设计中的应用. 航空学报, 2005, 26(5): 562-566.

文章导航

/