材料工程与机械制造

等离子喷涂LaTi2Al9O19热障涂层的微观组织结构及热物理性能

  • 郝维维 ,
  • 郑蕾 ,
  • 郭洪波 ,
  • 宫声凯 ,
  • 徐惠彬
展开
  • 1. 北京航空航天大学材料科学与工程学院, 北京 100191;
    2. 北京航空航天大学特种功能材料与薄膜技术北京市重点实验室, 北京 100191
郝维维 女, 硕士研究生。主要研究方向: 热障涂层。 Tel: 010-82317117 E-mail: haowei11@yahoo.com.cn;郑蕾 女, 博士, 助理研究员。主要研究方向: 功能材料。 Tel: 010-82317117 E-mail: Zhenglei@buaa.edu.cn;郭洪波 男, 博士, 教授, 博士生导师。主要研究方向: 高性能发动机热防护涂层; 薄膜科学与技术; 电子束/离子束表面改性。 Tel: 010-82317117 E-mail: guo.hongbo@buaa.edu.cn;宫声凯 男, 博士, 教授, 博士生导师。主要研究方向: 先进热障涂层材料技术, 先进轻质高温结构金属间化合物材料。 Tel: 010-82339003 E-mail: gongsk@buaa.edu.cn;徐惠彬 男, 博士, 教授, 博士生导师, 中国工程院院士。主要研究方向: 新型形状记忆合金、 热障涂层和磁致伸缩材料等特种功能材料。 Tel: 010-82338173 E-mail: xuhb@buaa.edu.cn

收稿日期: 2012-07-25

  修回日期: 2012-09-18

  网络出版日期: 2012-09-25

基金资助

国家自然科学基金(51071013);国家重点基础研究发展计划(2010CB631200,2012CB625100)

Microstructure and Thermo-physical Properties of Plasma Sprayed LaTi2Al9O19 Thermal Barrier Coatings

  • HAO Weiwei ,
  • ZHENG Lei ,
  • GUO Hongbo ,
  • GONG Shengkai ,
  • XU Huibin
Expand
  • 1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
    2. Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191, China

Received date: 2012-07-25

  Revised date: 2012-09-18

  Online published: 2012-09-25

Supported by

National Natural Science Foundation of China (51071013); National Basic Research Program of China(2010CB631200, 2012CB625100)

摘要

第一代热障涂层(TBCs)由氧化钇部分稳定的氧化锆(YSZ)陶瓷隔热层和金属粘结层组成,该涂层长期使用温度低于1 200℃。随着先进航空发动机向着高推重比发展,迫切要求发展新一代超高温、高隔热热障涂层材料。LaTi2Al9O19(LTA)在1 500℃长期保持相稳定,是一种非常有前景的超高温热障涂层候选材料。本文采用大气等离子喷涂(APS)制备了LTA涂层,研究了喷涂工艺对涂层微观组织结构和热物理性能的影响。结果表明沉积态涂层中含少量的非晶态,在860℃和1 130℃出现晶化峰。等离子喷涂过程中La2O3挥发量较多,导致沉积态涂层中La元素与原始粉末相比含量偏低,而其他组分的化学成分随喷涂功率变化不大。LTA涂层的热扩散系数在1 400℃下为0.3~0.4 mm2·s-1,热导率为1.1~1.6 W·m-1·K-1。1 050℃经过20小时热处理后,得到晶化的涂层在晶化温度范围内的热扩散系数和热导率值均增大。随着喷涂功率减小,涂层孔隙率增加,热导率减小。

本文引用格式

郝维维 , 郑蕾 , 郭洪波 , 宫声凯 , 徐惠彬 . 等离子喷涂LaTi2Al9O19热障涂层的微观组织结构及热物理性能[J]. 航空学报, 2013 , 34(6) : 1485 -1492 . DOI: 10.7527/S1000-6893.2013.0244

Abstract

Conventional thermal barrier coatings (TBCs) consisting of a yttria stabilized zirconia (YSZ) ceramic coat and a metallic bond coat for industrial application cannot work long above 1 200℃. With aero-engines developing towards higher thrust-to-weight ratio, it is necessary to develop new ceramic coating materials with better thermal barrier performance for ultra-high temperature application. LaTi2Al9O19 (LTA) was proposed as a promising candidate due to its excellent phase stability at temperatures above 1 500℃. In this paper, the LTA coatings were produced by atmospheric plasma spraying (APS) and their microstructures and thermo-physical properties were investigated. There were some amorphous phases in the as-sprayed coatings and crystallization of the coatings occurred at 860℃ and 1 130℃, respectively. Due to the volatilization of La2O3 during spraying, the concentration of La in the sprayed coating was relatively lower than that in the powder, while the other elements didn't show apparent changes in the compositions. The thermal diffusivity of the LTA coatings ranged from 0.3 to 0.4 mm2·s-1 at 1 400℃ and the corresponding thermal conductivity were in the range of 1.1 to 1.6 W·m-1·K-1. The coating porosity increased as the spraying power decreased, while the thermal conductivity decreased with increasing spraying power.

参考文献

[1] Guo H B, Gong S K, Xu H B. Progress in thermal barrer coating for advanced aeroengines. Materials China, 2009, 28(9-10): 18-26. (in Chinese) 郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展. 中国材料进展, 2009, 28(9-10): 18-26.
[2] Harmsworth P D, Stevens R. Phase composition and properties of plasma-sprayed zirconia thermal barrier coatings. Journal of Materials Science, 1992, 27(3): 611-615.
[3] Miller R A. Thermal barrier coatings for aircraft engines: history and directions. Journal of Thermal Spray Technology, 1997, 6(1): 35-42.
[4] Thornton J, Majumdar A, McAdam G. Enhanced cerium migration in ceria-stabilized zirconia. Surface and Coatings Technology, 1997, 94-95:112-117.
[5] Matsumoto M, Yamaguchi N, Matsubara H. Low thermal conductivity and high temperature stability of ZrO2-Y2O3-La2O3 coatings produced by electron beam PVD. Scripta Materialia, 2004, 50(6): 867-871.
[6] Vaβen R, Stver D. New thermal barrier coatings based on pyrochlore/YSZ double layer systems. International Journal of Applied Ceramic Technology, 2005, 1(4): 351-361.
[7] Vaβen R, Cao X Q, Tietz F, et al. Zirconates as new materials for thermal barrier coatings. Journal of the American Ceramic Society, 2000, 83(8): 2023-2028.
[8] Cao X Q, Vaβen R, Fischer W, et al. Lanthanum-cerium Oxide as a thermal barrier coating material for high-temperature applications. Advanced Materials, 2003, 15(17): 1438-1442.
[9] Ma W, Gong S K, Xu H B, et al. On improving the phase stability and thermal expansion coefficients of lanthanum cerium oxide solid solutions. Scripta Materialia, 2006, 548: 1505-1508.
[10] Gadow R, Schäfer G. Ceramic engineering and science proceedings. Ustundag E ed. 23rd Annual Conference on Composites, Advanced Ceramics. Westerville, OH, 1999, 20 (4): 29-300.
[11] Xie X Y, Guo H B, Gong S K, et al. Lanthanum-titanium-aluminum oxide: a novel thermal barrier coating material for applications at 1300℃. Journal of the European Ceramic Society, 2011, 31(9): 1677-1683.
[12] Xie X Y, Guo H B, Gong S K. Mechanical properties of LaTi2Al9O19 and thermal cycling behaviors of plasma-sprayed LaTi2Al9O19/YSZ thermal barrier coatings. Journal of Thermal Spray Technolgy, 2010, 19(6): 1179-1185.
[13] Xie X Y, Guo H B, Gong S K, et al. Thermal cycling behavior and failure mechanism of LaTi2Al9O19/YSZ thermal barrier coatings exposed to gas flame. Surface and Coatings Technology, 2011, 205(17): 4291-4298.
[14] Xie X Y. Study on the thermo-physical properties and high temperature stability of LaTi2Al9O19 thermal barrier coatings. Beijing: School of Materials Science and Engineering, Beihang University, 2011. (in Chinese) 谢小云. LaTi2Al9O19热障涂层热物理性能及高温定性研究. 北京: 北京航空航天大学材料科学与工程学院, 2011.
[15] Morgan P E D. Preparing new extremely difficult-to-form crystal structures. Materials Research Bulletin, 1984, 19(3): 369-376.
[16] Schulz U, Saruhan B, Fritscher K, et al. Review on advanced EB-PVD ceramic topcoats for TBC applications. International Journal of Applied Ceramic Technology, 2004, 1(4): 302-315.
[17] ASTM C693-84.Standard test method for measurement of density of glass by buoyancy. USA: American Society for Testing and Materials. Philadelphia, PA, 1985.
[18] Kingery W D. Thermal conductivity: XII, temperature dependence of conductivity for single-phase ceramics. Journal of the American Ceramic Society, 1955, 38: 251-255.
[19] Cao X Q. Thermal barrier coating material. Beijing: Science Press, 2007: 163-164. (in Chinese) 曹学强. 热障涂层材料. 北京: 科学出版社, 2007: 161-164.
文章导航

/