流体力学与飞行力学

矩形横截面螺旋管湍流流动与传热特性的数值研究

  • 邢云绯 ,
  • 仲峰泉 ,
  • 张新宇
展开
  • 中国科学院力学研究所高温气体动力学国家重点实验室, 北京 100190
邢云绯 女, 博士, 助理研究员。主要研究方向: 超临界流体传热、 冲击射流强化冷却。 Tel: 010-82545830 E-mail: xingyunfei@imech.ac.cn;仲峰泉 男, 博士, 副研究员。主要研究方向: 发动机主动冷却气/固/液耦合传热分析, 超临界流体传热, 超声速燃烧机理及数值模拟。 Email: fzhong@imech.ac.cn

收稿日期: 2012-07-10

  修回日期: 2012-09-10

  网络出版日期: 2012-09-24

基金资助

国家自然科学基金(10902115,11172309)

Numerical Study of Turbulent Flow and Heat Transfer Characteristics in Helical Rectangular Ducts

  • XING Yunfei ,
  • ZHONG Fengquan ,
  • ZHANG Xinyu
Expand
  • State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2012-07-10

  Revised date: 2012-09-10

  Online published: 2012-09-24

Supported by

National Natural Science Foundation of China (10902115, 11172309)

摘要

采用了剪切应力输运(SST)k-ω两方程湍流模型并考虑近壁低雷诺数的修正对矩形横截面螺旋管内冷却水流动和传热特性进行了数值研究。数值分析了在不同入口雷诺数、曲率半径以及扭距条件下,螺旋管内的温度、速度场以及流线的变化,讨论了螺旋管内、外壁面对流传热系数的差异及产生机理,同时与直通管道传热性能进行了比较。研究发现由于离心力的作用,螺旋管内存在显著的二次流动,管内、外侧壁面对流传热存在差异。旋转一周后,螺旋管即进入了流动稳定状态,入口雷诺数可以显著提升螺旋管整体的对流换热效率,扭矩和曲率对内外壁面传热效果的影响不大,而窄高型的横截面构型可以显著改善螺旋管的传热效果。研究结果对应用矩形横截面螺旋管的冷却设计提供参考。

关键词: 螺旋管; 湍流; 曲率; 传热; 矩形

本文引用格式

邢云绯 , 仲峰泉 , 张新宇 . 矩形横截面螺旋管湍流流动与传热特性的数值研究[J]. 航空学报, 2013 , 34(6) : 1269 -1276 . DOI: 10.7527/S1000-6893.2013.0231

Abstract

Three-dimensional turbulent forced convective heat transfer and its flow characteristics in a helical rectangular duct are simulated using a shear stress transport (SST) k-ω turbulence model and taking into consideration the modified low Reynolds number near the wall. The temperature,flow field and the streamline at different axial locations along the stream are analyzed for different Reynolds numbers, different curvatures and different torsions. The causes of the differences between the inner and outer walls of the helical rectangular ducts are discussed and the differences between the helical duct and straight channel are compared. A second flow in the helical duct caused by the centrifugal effect results in the differences between the inner and outer walls. For the present study, the flow is steady after the first roll. The Reynolds number can enhance the overall heat transfer, and torsion and curvature do not much change the heat transfer effect. But the rectangular configurations can significantly enhance the heat transfer coefficients. The results obtained from the present investigation are meant to serve as basic data for further cooling design using helical rectangular ducts.

参考文献

[1] Aly W I, Inaba H, Haruki N, et al. Drag, and heat transfer reduction phenomena of drag-reducing surfactant solutions in straight and helical pipes. Journal of Heat Transfer, 2006, 128(8): 800-810.
[2] Kao H C. Torsion effect on fully developed flow in a helical pipe. Journal of Fluid Mechanics, 1987, 184(1): 335-356.
[3] Xin R C, Ebadian M A. The effects of Prandtl numbers on local and average convective heat transfer characteristics in helical pipes. Journal of Heat Transfer, 1997, 119 (3): 467-473.
[4] Wu S Y, Chen S J, Li Y R, et al. Numerical investigation of turbulent flow, heat transfer and entropy generation in a helical coiled tube with larger curvature ratio. Heat and Mass Transfer, 2009, 45(5): 569-578.
[5] Pizza I D, Ciofalo M. Numerical prediction of turbulent flow and heat transfer in helical coiled pipes. International Journal of Thermal Sciences, 2010, 49(4): 653-663.
[6] Moawed M. Experimental study of forced convection from helical coiled tubes with different parameters. Energy Conversion and Management, 2011, 52(2): 1150-1156.
[7] Thangam S, Hur N. Laminar secondary flows in curved rectangular ducts. Journal of Fluid Mechanics, 1990, 217: 421-440.
[8] Bolinder C J, Sunden B. Flow visualization and LDV measurements of laminar flow in a helical square duct with finite pitch. Experimental Thermal and Fluid Science, 1995, 11(4): 348-363.
[9] Bolinder C J. First and higher-order effects of curvature and torsion on the flow in a helical rectangular duct. Journal of Fluid Mechanics, 1996, 314: 113-138.
[10] Zabielski L, Mestel A J. Steady flow a helically symmetric pipe. Journal of Fluid Mechanics, 1998, 370(1): 297-320.
[11] Zabielski L, Mestel A J. Kinematic dynamo action in a helical pipe. Journal of Fluid Mechanics, 2005, 535: 347-367.
[12] Sakalis V D, Hatzikonstantinou P M, Papadopoulos P K. Numerical procedure for the laminar developed flow in a helical square duct. Journal of Fluid Engineering, 2005, 127(1): 136-148.
[13] Egner M W, Burmeister L C. Heat transfer for laminar flow in spiral ducts of rectangular cross section. Journal of Heat Transfer, 2005, 127(3): 352-356.
[14] Mori Y, Uchida Y, Ukon T. Forced convective heat transfer in a curved channel with a square cross section. International Journal of Heat Mass Transfer, 1971, 14(11): 1787-1805.
[15] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, 32(8): 1598-1605.
[16] ANSYS Fluent, FLUENT 6.3 User's Guide. Fluent Inc. 2006.
[17] Sieder E N, Tate C E. Heat transfer and pressure drop of liquids in tubes. Industrial & Engineering Chemistry, 1936, 28(12): 1429-1435.
文章导航

/