电子与控制

基于改进SURF和P-KLT算法的特征点实时跟踪方法研究

  • 蔡佳 ,
  • 黄攀峰
展开
  • 1. 西北工业大学 航天飞行动力学技术重点实验室, 陕西 西安 710072;
    2. 西北工业大学 智能机器人研究中心, 陕西 西安 710072
蔡佳 男, 博士研究生。主要研究方向: 非合作目标检测、 跟踪与相对位姿测量、 视觉导航。 Tel: 029-88460366-803 E-mail: caijianwpu@163.com;黄攀峰 男, 博士, 教授, 博士生导师。主要研究方向: 空间机器人学、 空间遥操作、 导航、 制导与控制。 Tel: 029-88460366-801 E-mail: pfhuang@nwpu.edu.cn

收稿日期: 2012-06-13

  修回日期: 2012-08-29

  网络出版日期: 2012-09-05

基金资助

国家自然科学基金(61005062,11272256)

Research of a Real-time Feature Point Tracking Method Based on the Combination of Improved SURF and P-KLT Algorithm

  • CAI Jia ,
  • HUANG Panfeng
Expand
  • 1. National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Research Center for Intelligent Robotics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2012-06-13

  Revised date: 2012-08-29

  Online published: 2012-09-05

Supported by

National Natural Science Foundation of China (61005062,11272256)

摘要

针对视频序列中运动目标的实时跟踪问题,提出一种基于改进SURF算法和金字塔KLT算法相结合的特征点跟踪方法。首先人工标定目标区域,利用改进的SURF算法分块快速提取具有高鲁棒性、独特性的特征点;然后在后续帧中应用金字塔KLT匹配算法对特征点进行稳定跟踪,采用基于统计的方法剔除错误匹配对;最后利用Greedy Snake分割算法提取轮廓确定更加精准的位置信息,更新目标区域。为使算法更具鲁棒性,还设计了离散点筛选、自适应更新策略。利用飞行视频数据库进行了大量的仿真,结果表明:该算法适用于多尺度图像序列中位置、姿态发生快速变化且结构简单的飞行器的稳定跟踪。帧平均时间为31.8 ms,比SIFT+P-KLT跟踪算法减少47.1%;帧几何中心、目标轮廓面积平均误差分别为5.03像素、16.3%,分别比GFTT+P-KLT跟踪算法减少27.2%、56.9%,比SIFT跟踪算法减少38.6%、68.4%。

本文引用格式

蔡佳 , 黄攀峰 . 基于改进SURF和P-KLT算法的特征点实时跟踪方法研究[J]. 航空学报, 2013 , 34(5) : 1204 -1214 . DOI: 10.7527/S1000-6893.2013.0206

Abstract

In order to track moving targets of image sequences in real time, a novel feature point tracking algorithm is proposed by using a combination of improved speeded up robust features (SURF) algorithm and pyramid kanade-lucas-tomasi (P-KLT) matching algorithm. First, the target box is marked manually and improved SURF algorithm is applied to extract features which are robust and distinctive in different blocks. Then, the features are tracked stably by the hierarchically iterative matching of P-KLT algorithm and mismatched points are eliminated utilizing a statistical method. Finally, the exact location of the target is obtained with the application of extracting the target contour by the Greedy Snake algorithm and the target box is updated automatically. Furthermore, discrete feature filter and adaptive feature updating strategy are designed to improve the robustness. Simulation results show that the algorithm can adapt to objective changes in attitude and size and track stably aerial vehicles with simple structures. Time consumption per frame is 31.8 ms, which is 47.1% less than SIFT+P-KLT algorithm. Geometric center error per frame is 5.03 pixel, which is 27.2% less than GFTT+P-KLT tracking algorithm and 38.6% less than SIFT+P-KLT tracking algorithm. Contour area error per frame is 16.3%, which is 56.9% less than GFTT+P-KLT tracking algorithm and 68.4% less than SIFT+P-KLT tracking algorithm.

参考文献

[1] Zhou H Y, Yuan Y, Zhang Y, et al. Non-rigid object tracking in complex scenes. Pattern Recognition Letters, 2009, 30(2): 98-102.
[2] Sivic J, Schaffalitzky F, Zisserman A. Object level grouping for video shots. The 8th European Conference on Computer Vision (ECCV), 2004.
[3] Lowe D G. Object recognition from local scale-invariant features. International Conference on Computer Vision, 1999.
[4] Bay H, Tuytelaars T, Gool L V. SURF: speeded(up robust features. The 9th European Conference on Computer Vision, 2006.
[5] Takacs G, Chandrasekhar V, Tsai S, et al. Unified real-time tracking and recognition with rotation-invariant fast features. IEEE Computer Conference on Computer Vision and Pattern Recognition (CVPR), 2010.
[6] Calonder M, Lepetit V, Strecha C, et al. BRIEF: binary robust independent elementary features. The 11th European Conference on Computer Vision, 2010.
[7] Ethan R, Vincent R, Kurt K, et al. ORB: an efficient alternative to SIFT or SURF. 2011 International Conference on Computer Vision (ICCV), 2011.
[8] Khvedchenya E. Feature descriptor comparison report. (2011-08-19)[2012-04-20]. http://computer-vision-talks.com/.
[9] Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38(4): 45.
[10] Lucas B, Kanade T. An iterative image registration technique with an application to stereo vision. International Joint Conference on Artificial Intelligence, 1981.
[11] Tomasi C, Kanade T. Detection and tracking of point features. Carnegie Mellon University Technical Report CMU-CS-91-132, 1991.
[12] Mian A S. Realtime visual tracking of aircrafts. Procee-dings of the 2008 Digital Image Computing: Techniques and Applications, 2008.
[13] Ben B, Ian R. Stable multi-target tracking in real-time surveillance video. IEEE Computer Conference on Computer Vision and Pattern Recognition, 2011.
[14] Gong J, Liu F Q, Song C L, et al. Research on the moving vehicle detection algorithm based on the motion vector. Advances in Intelligent and Soft Computing, 2012, 127: 41-49.
[15] Liu Y, Wang J D, Li P. A feature point tracking method based on the combination of SIFT algorithm and KLT matching algorithm. Journal of Astronautics, 2011, 32(7): 1618-1625. (in Chinese) 刘玉, 王敬东, 李鹏. 一种基于SIFT和KLT相结合的特征点跟踪方法研究. 宇航学报, 2011, 32(7): 1618-1625.
[16] Wang Y M, Wang G J. Image local invariant features and descriptors. Beijing: National Defense Industry Press, 2010: 89-100. (in Chinese) 王永明, 王贵锦. 图像局部不变性特征与描述. 北京: 国防工业出版社, 2010: 89-100.
[17] Song L H. The study of target positioning technology based on UAV image sequence. Zhengzhou: The Institute of Surveing and Mapping, PLA Information Engineering University, 2011. (in Chinese) 宋丽华. 基于无人飞行器序列影像的定位技术研究. 郑州: 中国人民解放军信息工程大学测绘学院, 2011.
[18] Bradski G, Kaebler A. Learning OpenCV. Yu S Q, Liu R Z, translated. Beijing: Tsinghua University Press, 2009: 362-363. (in Chinese) Bradski G, Kaebler A. 学习OpenCV. 于仕琪, 刘瑞祯, 译. 北京: 清华大学出版社, 2009: 362-363.
文章导航

/