流体力学与飞行力学

开裂式方向舵在变前掠翼布局中的操纵性能研究

  • 王旭 ,
  • 于冲 ,
  • 苏新兵 ,
  • 陈鹏
展开
  • 1. 空军工程大学 工程学院, 陕西 西安 710038;
    2. 中国人民解放军93286部队, 辽宁 沈阳 110141
王旭 男, 博士, 教授, 硕士生导师。主要研究方向: 飞行器设计与计算流体力学。 Tel: 029-84787505 E-mail: wanxuii@yahoo.com;于冲 男, 硕士。主要研究方向: 计算流体力学。 E-mail: yuchong808@sina.com;苏新兵 男, 硕士, 副教授。主要研究方向: 飞行器设计。 Tel: 029-84787505 E-mail: sxinbing@sohu.com;陈鹏 男, 硕士。主要研究方向: 计算流体力学。 E-mail: 787794711@qq.com

收稿日期: 2012-05-14

  修回日期: 2012-07-26

  网络出版日期: 2013-04-23

基金资助

空气动力学预研基金(090251313058)

Study of Control Characteristics for Split Rudder in Variable Forward Swept Wing Configuration

  • WANG Xu ,
  • YU Chong ,
  • SU Xinbing ,
  • CHEN Peng
Expand
  • 1. Engineering Institute, Air Force Engineering University, Xi'an 710038, China;
    2. PLA Unit 93286, Shenyang 110141, China

Received date: 2012-05-14

  Revised date: 2012-07-26

  Online published: 2013-04-23

Supported by

Aerodynamics Pre-research Foundation (090251313058)

摘要

针对变前掠翼(VFSW)无尾布局的横航向操纵,设计了开裂式方向舵(SR)操纵面,采用Navier-Stokes控制方程的有限体积离散方法以及剪切应力输运(SST)湍流模型,计算了变前掠翼中平直翼和典型的前掠翼布局开裂式方向舵的操纵性能,并对其操纵效率进行了比较,分析了其流场形态。计算结果表明:右侧开裂式方向舵打开后,平直翼时迎角对偏航力矩的影响较小,而舵偏量对偏航影响显著,利于偏航;前掠翼的偏航力矩随迎角的增加有所波动,但在小迎角时较为稳定,偏航作用随舵偏量增加而增强;右侧滑对滚转作用强于左侧滑,偏航作用低于左侧滑。经比较,平直翼的偏航作用明显强于前掠翼,平直翼和前掠翼的滚转和偏航作用均具有耦合性,但平直翼的耦合效应弱于前掠翼。

本文引用格式

王旭 , 于冲 , 苏新兵 , 陈鹏 . 开裂式方向舵在变前掠翼布局中的操纵性能研究[J]. 航空学报, 2013 , 34(4) : 741 -749 . DOI: 10.7527/S1000-6893.2013.0133

Abstract

For the lateral and directional control of variable forward swept wing (VFSW) tailless configuration, a split rudder (SR) is designed in this paper. The disperse method of Navier-Stokes control equations with finite volume and shear stress transport (SST) turbulence model are employed to calculate the SR control characteristics of the orthogonal wing and forward swept wing in VFSW the control efficiency of SR is compared, and the flow field of SR is numerically analyzed. The computational results show that the case when the right SR actuates the angle of attack in the orthogonal wing has less effect on the yawing moment, while the rotary angle of SR has a remarkable impact on the yawing moment, which is propitious to yaw. In the forward swept wing configuration, the yawing moment tends to fluctuate with the increase of the angle of attack, but it appears steady in small angles of attack. The yawing function strengthens with the increase of the rotary angle. The right sideslip is stronger than left sideslip, but the opposite is true in yawing function. Comparatively, in the aspect of yawing, the orthogonal wing is better than the forward swept wing. The rolling and yawing are all coupled in both the orthogonal wing and forward swept wing configurations, but the coupling effect of the orthogonal wing is less than the forward swept wing.

参考文献

[1] Zhang B Q, Laschka B. On forward-swept wing's aerodynamic characteristics. Journal of Northwestern Polytechnical University, 1989, 7(3): 321-328. (in Chinese) 张彬乾, Laschka B. 前掠翼气动特性研究. 西北工业大学学报, 1989, 7(3): 321-328.
[2] Ye L, Zhang B Q. Control of separated flow at the root for forward swept wing. Science Technology and Engineering, 2008, 8(3): 836-839. (in Chinese) 叶露, 张彬乾. 前掠翼根部流动分离控制措施研究. 科学技术与工程, 2008, 8(3): 836-839.
[3] Wang J J, Zhao X, Wang S F, et al. Experimental investigation on longitudinal aerodynamic characteristics of canard-forward-swept wing configuration. Acta Aerodynamica Sinica, 2004, 22(2): 237-244. (in Chinese) 王晋军, 赵霞, 王双峰, 等. 鸭翼-前掠翼气动布局纵向气动特性实验研究. 空气动力学学报, 2004, 22(2): 237-244.
[4] Zhan J X, Wang J J, Zhao X, et al. Investigation on the effects of the height of close canard wing on the aerodynamic characteristic of a forward-swept configuration. Journal of Experiments in Fluid Mechanics, 2006, 20(2): 50-54. (in Chinese) 展京霞, 王晋军, 赵霞, 等. 近距鸭翼高度对鸭翼-前掠翼布局纵向气动特性影响的实验研究. 实验流体力学, 2006, 20(2): 50-54.
[5] Northrop Grumman Corporation. Aircraft with variable forward sweep wing: USA, US5984231. 1999-11-16.
[6] Hoiinouchi S. Variable forward swept wing supersonic aircraft having both low-boom characteristics and low-drag characteristics: USA, US Fresh Patent 20050230531. 2005-10-20.
[7] Liu W F, Wang X, Mi K. A New aerodynamic configuration of UAV with variable forward-swept wing. Acta Aeronautica et Astronautica Sinica, 2009, 30(5):832-836. (in Chinese) 刘文法, 王旭, 米康. 一种新的变前掠翼无人机气动布局概念研究. 航空学报, 2009, 30(5): 832-836.
[8] Liu W F, Wang X, Liu X. Aerodynamic characteristics and flow mechanism of theconfiguration with variable forward swept wing. Acta Aerodynamic Sinica, 2010, 28(5): 559-564. (in Chinese) 刘文法, 王旭, 刘雄. 变前掠翼布局气动特性及流动机理研究. 空气动力学学报, 2010, 28(5): 559-564.
[9] Wang X, Huang M, Ren Z J, al et. Comparision and analysis on the aerodynamic characteristics of forward swept and orthogonal wing configuration. Journal of Air Force Engineering University (Natural Science Edition), 2011, 12(4):1-4. (in Chinese) 王旭, 黄萌, 仁智静, 等. 前掠翼与平直翼布局气动特性的比较分析. 空军工程大学学报(自然科学版), 2011, 12(4): 1-4.
[10] Zhang Z J, Li J, Li T, et al. Experimental investigation of split-rudder deflection on aerodynamic performance of tailless flying-wing aircraft. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 63-66.(in Chinese) 张子军, 黎军, 李天, 等. 开裂式方向舵对某无尾飞翼布局飞机气动特性影响的实验研究. 实验流体力学, 2010, 24(3): 63-66.
[11] Dorsett K M, Mehl D R. Innovative control effectors(ICE). WL-TR-96-3043, 1996.
[12] William J G. Innovative control effectors (configuration 101)dynamic wind tunnel test report rotary balance and force oscillation tests. AFRL-VA-WP-Tp-1998-3043, 1998.
[13] Ma S H, Wu C F, Chen H M. The application of drag rudder to flight control of tailless aircraft. Flight Dyna-mics, 2008, 26(2): 69-73. (in Chinese) 马松辉, 吴成富, 陈怀民. 阻力方向舵在无尾飞机飞行控制中的应用. 飞行力学, 2008, 26(2): 69-73.
[14] Chai X, Wang G L, Wu Z. Study on the control surface characteristics and flight control of the high sweepback flying wing UAV. Flight Dynamics, 2009, 27(6): 26-29.(in Chinese) 柴雪, 王钢林, 武哲. 大后掠飞翼布局无人机操纵面特性及控制研究. 飞行力学, 2009, 27(6): 26-29.
[15] Wang L, Wang L X, Jia Z R. Control features and application characteristics of split drag rudder utilized by flying wing. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1392-1399. (in Chinese) 王磊, 王立新, 贾重任. 飞翼布局飞机开裂式方向舵的作用特性和使用特点. 航空学报, 2011, 32(8): 1392-1399.
[16] Wang Y Y, Zhang B Q, Shen D. Exploring combined capability of aerodynamic control surfaces of W-shaped tailless configuration. Journal of Northwestern Polytechnical University, 2008, 26(6): 698-702.(in Chinese) 王元元, 张彬乾, 沈冬. W型无尾布局复合式气动舵面设计研究. 西北工业大学学报, 2008, 26(6): 698-702.
[17] Office of the Secretary of Defense. Unmanned aerial vehicles roadmap 2002-2027. ADA414908, 2002.
[18] Office of the Secretary of Defense. Unmanned aircraft systems roadmap 2005-2030. 05-S-1620, 2005.
[19] Fang B R. Aircraft aerodynamic configuration design. Beijing: Aviation Industry Press, 1997: 363-367. (in Chinese) 方宝瑞. 飞机气动布局设计. 北京: 航空工业出版社, 1997: 363-367.
[20] Yu C, Wang X, Dong F A, al et. The study of effect on y+ for precision of pneumatic parameters about foil. Journal of Air Force Engineering University (Natural Science Edition), 2012, 13(3):25-29. (in Chinese) 于冲, 王旭, 董福安, 等. y+值对翼型气动参数计算精度的影响研究. 空军工程大学学报(自然科学版), 2012, 13(3): 25-29.
文章导航

/