电子与控制

基于FRFT的雷达信号chirp基稀疏特征提取 及分选

  • 黄宇 ,
  • 刘锋 ,
  • 王泽众 ,
  • 向崇文
展开
  • 海军航空工程学院 电子信息工程系, 山东 烟台 264001
黄宇,男,博士研究生。主要研究方向:复杂调制信号截获、分选与识别。Tel:0535-6635821,E-mail:huangyu.yantai@163.com;刘锋,男,博士,教授,博士生导师。主要研究方向:综合电子战与网络对抗。Tel:0535-6635821,E-mail:fengliuhy@163.com

收稿日期: 2012-02-24

  修回日期: 2012-07-26

  网络出版日期: 2012-08-27

基金资助

国家自然科学基金(60902054);中国博士后科学基金(20090460114, 201003758)

Chirp Function Sparse Feature Extraction and Sorting of Radar Signals Based on FRFT

  • HUANG Yu ,
  • LIU Feng ,
  • WANG Zezhong ,
  • XIANG Chongwen
Expand
  • Department of Electronic and Information Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China

Received date: 2012-02-24

  Revised date: 2012-07-26

  Online published: 2012-08-27

Supported by

National Natural Science Foundation of China (60902054); China Postdoctoral Science Foundation (20090460114, 201003758)

摘要

特征分析是雷达信号分选识别的基础,利用稀疏分解思想对新体制雷达信号进行特征提取是一个新的研究方向。本文以分数阶Fourier变换的核函数作为稀疏分解的chirp基函数,将具有相近特征参数的chirp基函数构成基函数族用于稀疏分量提取,推导了在分数阶Fourier域基于匹配跟踪的chirp基函数族稀疏分解公式,然后利用chirp基稀疏分量的调频率和初始频率构成特征参数序列,将雷达信号脉冲分成5大类进行分选和识别,仿真分析验证了推导结果的有效性。结果表明对于具有线性或曲线时频特征的雷达信号在信噪比为-3 dB,采样频率为500 MHz,观测时间为2 μs,调频率不超过100 MHz/μs时,仍然具有95%的正确分选概率。

本文引用格式

黄宇 , 刘锋 , 王泽众 , 向崇文 . 基于FRFT的雷达信号chirp基稀疏特征提取 及分选[J]. 航空学报, 2013 , 34(2) : 393 -400 . DOI: 10.7527/S1000-6893.2013.0045

Abstract

Feature analysis is the basis of radar signal sorting and identifying, and feature extraction of a new system radar signals through sparse decomposition is a new research topic. This paper uses the fractional Fourier transform kernel function as the basic chirp function of sparse decomposition to make up chirp functions with similar parameters into a function family for extracting sparse components, and derive the sparse decomposition formula with a matching pursuit in the fractional Fourier domain. Then a characteristic parameter sequence is formed consisting of chirp-based sparse components’ chirp-ratio and initial frequency, and the radar signal pulses are divided into five classes for sorting and identifying. Simulation analysis proves the validity of the derived conclusion, and results show that the linear or curved time-frequency characteristics of radar signals still have 95% correct sorting probability when the SNR is -3 dB, sampling frequency is 500 MHz, observed time is 2 μs, and the chirp-ratio is no more than 100 MHz/μs.

参考文献

[1] Pace P E. Detecting and classifying low probability of intercept radar. 2nd ed. Norwood:Artech House, 2009: 31-37.

[2] Si X C, Chai J F. Feature extraction and auto-sorting to envelope function of rotation angle α domain of radar signals based on FRFT. Journal of Electronics & Information Technology, 2009, 31(8): 1892-1897. (in Chinese) 司锡才, 柴娟芳. 基于 FRFT 的 α 域-包络曲线的雷达信号特征提取及自动分类. 电子与信息学报, 2009, 31(8): 1892-1897.

[3] López-Risueno G, Grajal J. Unknown signal detection via atomic decomposition. Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing, 2001: 174-177.

[4] López-Risueno G, Grajal J. Multiple signal detection and estimation using atomic decomposition and EM. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 84-102.

[5] López-Risueno G, Grajal J, Yeste-Ojeda O. Atomic decomposition-based radar complex signal interception. IEEE Proceedings Radar,Sonar and Navigation, 2003, 150(4): 323-331.

[6] Fadili M J, Starck J L, Bobin J, et al. Image decomposition and separation using sparse representations: an overview. Proceedings of the IEEE, 2010, 98(6): 983-994.

[7] Mann S, Haykin S. The chirplet transform: physical considerations. IEEE Transactions on Signal Processing, 1995, 43(11): 2745-2761.

[8] Bultan A. A four-parameter atomic decomposition of chirplets. IEEE Transactions on Signal Processing, 1999, 47(3): 731-745.

[9] Greenberg J M, Wang Z S, Li J. New approaches for chirplet approximation. IEEE Transactions on Signal Processing, 2007, 55(2): 734-741.

[10] Cho N, Kuo C C J. Sparse music representation with source-specific dictionaries and it’s application to signal separation. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(2): 326-337.

[11] Luo J S, Yu D J, Peng F Q. Multicomponent LFM signals detection based on multi-scale chirplet sparse signal decomposition. Journal of Electronics & Information Technology, 2009, 31(11): 2781-2785. (in Chinese) 罗洁思, 于德介, 彭富强. 基于多尺度线性调频基信号稀疏分解的多分量LFM信号检测. 电子与信息学报, 2009, 31(11): 2781-2785.

[12] Tao R, Deng B, Wang Y. Fractional Fourier transform and its applications. Beijing: Tsinghua University Press, 2009: 12-26. (in Chinese) 陶然, 邓兵, 王越. 分数阶傅里叶变换及其应用. 北京: 清华大学出版社, 2009: 12-26.

[13] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. Society for Industrial and Applied Mathematics Journal on Scientific Computing, 1998, 20(1), 33-61.

[14] Bultheel A. A two-phase implementation of the fractional Fourier transform. TW 588, Leuven: Katholieke Universiteit Leuven, 2011: 1-11.

[15] Skolnik M I. Radar handbook. 3rd ed. New York:McGraw-Hill Companies, 2008: 8.1-8.26.

文章导航

/