材料工程与机械制造

L型构件R区的超声相控阵检测方法

  • 徐娜 ,
  • 周正干 ,
  • 刘卫平 ,
  • 周晖 ,
  • 于光
展开
  • 1. 北京航空航天大学 机械工程及自动化学院, 北京 100191;
    2. 上海飞机制造有限公司 航空制造技术研究所, 上海 200436
徐娜,女,博士研究生。主要研究方向:超声相控阵检测。Tel:010-82313466,E-mail:bjxuna@163.com;周正干,男,博士,教授,博士生导师。主要研究方向:超声无损检测及计算机测控技术。Tel:010-82338668,E-mail:zzhenggan@buaa.edu.cn

收稿日期: 2012-05-08

  修回日期: 2012-07-19

  网络出版日期: 2012-08-11

基金资助

国家商用飞机制造工程技术研究中心创新基金

Ultrasonic Phased Array Inspection Method for the Corner of L-shaped Components

  • XU Na ,
  • ZHOU Zhenggan ,
  • LIU Weiping ,
  • ZHOU Hui ,
  • YU Guang
Expand
  • 1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China;
    2. Institute of Aeronautical Manufacturing Technology, Shanghai Aircraft Manufacturing Co.,Ltd., Shanghai 200436, China

Received date: 2012-05-08

  Revised date: 2012-07-19

  Online published: 2012-08-11

Supported by

Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing

摘要

针对常规超声检测难以胜任L型构件R区检测的问题,开展L型构件的超声相控阵检测方法研究。利用超声相控阵声束灵活可控的优势,制定了线阵换能器检测L型构件R区的检测方案;基于Fermat原理,提出了相控阵检测多层介质的延迟时间计算方法;通过有限差分法数值仿真和检测试验,验证了相控阵检测方案和延迟时间计算方法的正确性;最后,对复合材料L型试样R区进行检测试验,检测结果与实际试样信息基本一致。研究结果表明,所提出的采用线阵换能器检测L型构件R区的检测方法是可行有效的。

本文引用格式

徐娜 , 周正干 , 刘卫平 , 周晖 , 于光 . L型构件R区的超声相控阵检测方法[J]. 航空学报, 2013 , 34(2) : 419 -425 . DOI: 10.7527/S1000-6893.2013.0048

Abstract

Since the conventional ultrasonic testing approach is not competent for the corner inspection of L-shaped components, an ultrasonic phased array inspection method is studied for this purpose, which has the advantage that the beam can be controlled flexibly. Taking this into consideration, an inspection method of L-shaped components with linear array transducers was proposed. The delay time for the inspection of multilayer media was calculated according to Fermat’s principle. A finite difference numerical simulation and a testing experiment were conducted to verify the scheme of phased array inspection and the method of delay time calculation. Finally, a composite L-shaped specimen was detected and the experimental results were similar to the actual information of the specimen. The results show that it is feasible and effective for the ultrasonic phased array technique to detect the corner of L-shaped components with linear array transducers.

参考文献

[1] Luo X B, Chen T Q. Development trends of ultrasonic testing. Nondestructive Testing, 2005, 27(3): 148-152. (in Chinese) 罗雄彪, 陈铁群. 超声无损检测的发展趋势. 无损检测, 2005, 27(3): 148-152.

[2] Xu L, Zhang X H, Han J C. Review of NDE of composite materials in aerospace fields. Materials Review, 2005, 19(8): 79-82. (in Chinese) 徐丽, 张幸红, 韩杰才. 航空航天复合材料无损检测研究现状. 材料导报, 2005, 19(8): 79-82.

[3] Drinkwater B W, Wilcox P D. Ultrasonic arrays for non-destructive evaluation: a review. NDT & E International, 2006, 39(7): 525-541.

[4] Shi K R, Guo Y M. Phased array ultrasonic imaging and testing. Beijing: Higher Education Press, 2010: 15-25. (in Chinese) 施克仁, 郭寓岷. 相控阵超声成像检测. 北京: 高等教育出版社, 2010: 15-25.

[5] Zhong Z M, Mei D S. Development and application of ultrasonic phased array technique. Nondestructive Testing, 2002, 24(2): 69-71. (in Chinese) 钟志民, 梅德松. 超声相控阵技术的发展及应用. 无损检测, 2002, 24(2): 69-71.

[6] Lin L, Yang P H, Zhang D H, et al. Review of phased array ultrasonic testing for thick wall cast austenitic stainless steel pipeline welds. Journal of Mechanical Engineering, 2003, 39(2): 1-9. (in Chinese) 林莉, 杨平华, 张东辉, 等. 厚壁铸造奥氏体不锈钢管道焊缝超声相控阵检测技术概述. 机械工程学报, 2003, 39(2): 1-9.

[7] Wooh S C, Shi Y. Optimum beam steering of linear phased arrays. Wave Motion, 1999, 29(3): 245-265.

[8] Habermehl J, Lamarre A. Ultrasonic phased array tools for composite inspection during maintenance and manufacturing. 17th World Conference on Nondestructive Testing, 2008: 25-28.

[9] Ju H T. Research on the manual ultrasonic phased array inspection imaging algorithm. Harbin: Harbin Institute of Technology, 2008. (in Chinese) 鞠洪涛. 手动超声相控阵检测成像算法研究. 哈尔滨: 哈尔滨工业大学, 2008.

[10] Spies M. Efficient optimization of single and multiple element transducers for the inspection of complex-shaped components. NDT & E International, 2004, 37(6): 455-49.

[11] Li T B. Computational acoustics-sound field equation and calculate method. Beijing: Science Press, 2003: 67-83. (in Chinese) 李太宝. 计算声学-声场的方程和计算方法. 北京: 科学出版社, 2003: 67-83.

[12] Zhou Z G, Wei D. Analysis of ultrasonic sound field characteristic with FDTD. Journal of Mechanical Engineering, 2010, 46(2): 9-13. (in Chinese) 周正干, 魏东. 时域有限差分法在超声波声场特性分析中的应用. 机械工程学报, 2010, 46(2): 9-13.

[13] Wei D, Zhou Z G. Finite difference simulation of pulsed ultrasonic propagation in solids. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 388-392.(in Chinese) 魏东, 周正干. 固体中脉冲超声波传播的有限差分模拟. 航空学报, 2010, 31(2): 388-392.

[14] Satyanarayan L, Mohan K V, Krishnamurthy C V, et al. Finite difference time domain simulation of ultrasonic phased array sector scan for imaging cracks in large pipes, elbows, and tee sections. Research in Nondestructive Evaluation, 2008, 19(2): 61-86.

[15] Satyanarayan L, Sridhar C, Krishnamurthy C V, et al. Simulation of ultrasonic phased array technique for imaging and sizing of defects using longitudinal waves. International Journal of Pressure Vessels and Piping, 2007, 84(12): 716-729.

[16] Schroder C T, Scott W R. On the stability of the FDTD algorithm for elastic media at a material interface. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(2): 474-481.

[17] Wang Q, Ho S T. Implementation of perfectly matched layer boundary condition for finite-difference time-domain simulation truncated with gain medium. Journal of Lightwave Technology, 2011, 29(10): 1453-1459.

文章导航

/