基于线性矩阵不等式的电传飞机人机闭环系统稳定域
收稿日期: 2012-05-07
修回日期: 2012-06-13
网络出版日期: 2013-01-19
基金资助
国家自然科学基金(61074007)
Stability Region of Closed-loop Pilot-vehicle System for Fly-by-wire Aircraft Based on Linear Matrix Inequalities
Received date: 2012-05-07
Revised date: 2012-06-13
Online published: 2013-01-19
Supported by
National Natural Science Foundation of China (61074007)
针对静不稳定电传飞机作动器速率限制环节引起的Ⅱ型驾驶员诱发振荡(PIO)严重威胁飞机飞行安全的问题,研究了考虑作动器速率限制因素的人机闭环系统稳定域。引入增广状态变量分离速率限制环节,建立了人机闭环系统饱和非线性模型。为得到尽可能大的人机闭环系统稳定域估计,首先将稳定域求解问题转化为凸优化问题,再通过Schur补引理将其转化为线性矩阵不等式的求解问题,最终得到了人机闭环系统椭球体稳定域估计的一般算法。时域仿真研究表明:所估计的稳定域略微保守但不冒进,静不稳定电传飞机的Ⅱ型PIO是一种发散很快的振荡而非极限环振荡,驾驶员操纵增益以及作动器速率限制值是影响稳定域的重要因素。稳定域法物理意义清晰、结果直观,可用于非线性人机闭环系统稳定性的评估。
曹启蒙 , 李颖晖 , 徐浩军 . 基于线性矩阵不等式的电传飞机人机闭环系统稳定域[J]. 航空学报, 2013 , 34(1) : 19 -27 . DOI: 10.7527/S1000-6893.2013.0003
To improve the flight safety of static-unstability fly-by-wire airplanes caused by category Ⅱ pilot induced oscillations (PIO), the stability regions of a closed-loop pilot-vehicle system with actuator rate limiting are studied. Augmented state variables are introduced to segregate the rate limiting element. Thus, a saturation nonlinear model of the closed-loop pilot-vehicle system is built. In order to obtain the maximal estimator of the stability region, the estimation of the stability region of the closed-loop pilot-vehicle system is transformed into a convex optimization problem first. Secondly the Schur complement lemma is applied to transform the convex optimization problem into linear matrix inequalities formulations. Finally an ellipsoidal stability region estimating algorithm is obtained. The time-domain simulation results show that the estimated stability regions are slightly conservative and within the real stability region of the closed-loop pilot-vehicle system. The category Ⅱ PIO of static-unstability fly-by-wire airplanes are rapidly divergent oscillations rather than limit cycle oscillations. The pilot control gain and rate limiting value are distinct influence factors on the stability region. Therefore, the stability region method with specific physical concepts and illustrative results can be applied to evaluate the stability of a nonlinear closed-loop pilot-vehicle system.
[1] Gao J Y, Li L Y, Feng Y C. Aircraft handling qualities. Beijing: National Defense Industry Press, 2003: 156-157. (in Chinese) 高金源, 李陆豫, 冯亚昌. 飞机飞行品质. 北京: 国防工业出版社, 2003: 156-157.
[2] MIL-STD-1797A Military standard: flying qualities of piloted airplanes. 1990: 25-26.
[3] Klyde D H, McRuer D T, Myers T T. Pilot-induced oscillation analysis and prediction with actuator rate limiting. Journal of Guidance, Control, and Dynamics, 1997, 20(1): 81-89.
[4] Duda H. Effects of rate limiting element in flight control system-a new PIO criterion. AIAA-1995-3304, 1995.
[5] Ossmann D, Heller M, Brieger O. Enhancement of the nonlinear OLOP-PIO-criterion regarding phase-compensated rate limiters. AIAA-2008-6207, 2008.
[6] Meng J, Xu H J, Li D W. Application of gap criterion in prediction of category Ⅱ PIO. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(9): 1067-1070. (in Chinese) 孟捷, 徐浩军, 李大伟. Gap准则在Ⅱ型PIO预测中的应用. 北京航空航天大学学报, 2010, 36(9): 1067-1070.
[7] Amato F, Iervolino R, Scala S, Verde. Actuator design for aircraft robustness verse category Ⅱ PIO. AIAA-1996-3156, 1996.
[8] Hess R A, Stout P W. Predicting handling qualities levels for vehicles with nonlinear dynamics. AIAA-1998-494, 1998.
[9] Baily R E, Bidlack T J. A quantitative criterion for pilot-induced oscillations: time domain Neal-Smith criterion. AIAA-1996-3434, 1996.
[10] Cao Q M, Li Y H, Xu H J. Stability region for closed-loop pilot-vehicle system with actuator rate saturation. Journal of Beijing University of Aeronautics and Astronautics, published prior online. http://www.cnki.net/kcms/detail/11.2625.V.20120401.1206.014.html, 2012-04-01/2012-05-03. (in Chinese) 曹启蒙, 李颖晖, 徐浩军. 考虑作动器速率饱和的人机闭环系统稳定域. 北京航空航天大学学报, 网络优先出版. http://www.cnki.net/kcms/detail/11.2625.V.20120401. 1206.014.html, 2012-04-01/2012-05-03.
[11] Goman M, Fedulova E, Khramtsovsky A. Maximum stability region design for unstable aircraft with control constraints. AIAA-1996-3910, 1996.
[12] McRuer D T, Krendel E S. Mathematical models of human pilot behavior. AGARDograph No. 188, 1974.
[13] McRuer D T. Human dynamics in man-machine systems. Automatica, 1980, 16(3): 237-253.
[14] Hanke D. Handling qualities analysis on rate limiting elements in flight control systems. AGARD-AR-335, 1995: 23-26.
[15] Hindi H, Boyd S. Analysis of linear systems with saturation using convex optimization. The 37th IEEE Conference on Decision and Control, 1998: 903-908.
[16] Blanchini F. Set invariance in control. Automatica, 1999, 35(11): 1747-1767.
[17] Kiyama T, Iwasaki T. On the use of multi-loop circle criterion for saturating control synthesis. The American control Conference, 2000: 1225-1229.
[18] Li J, Li G Q, Li X J. Study on region of attraction for excitation system with saturation element. Proceedings of the CSEE, 2010, 30(9): 111-115. (in Chinese) 李江, 李国庆, 李筱婧. 计及饱和环节的励磁系统吸引域研究. 中国电机工程学报, 2010, 30(9): 111-115.
[19] Boyd S, Ghaoui L E, Feron E, et al. Linear matrix inequalities in system and control theory. Society for Industrial and Applied Mathematics(SIAM), 1994: 28-50.
/
〈 | 〉 |