流体力学与飞行力学

高空驻留太阳能飞机主动式光伏组件面功率特性研究

  • 昌敏 ,
  • 周洲 ,
  • 成柯 ,
  • 王睿
展开
  • 1. 西北工业大学 无人机特种技术重点实验室, 陕西 西安 710065;
    2. 西北工业大学 动力与能源学院, 陕西 西安 710072
昌敏,男,博士研究生。主要研究方向:无人机总体、气动布局设计等。E-mail:changmin0806@163.com;周洲,女,博士,教授,博士生导师。主要研究方向:无人机总体、气动布局设计等。Tel:029-88453368,E-mail:zhouzhou@mail.nwpu.edu.cn;成柯,男,博士,副教授。主要研究方向:光伏发电、风力发电和太阳能热利用等。E-mail:cksolar@163.com;王睿,男,博士,工程师。主要研究方向:无人机飞行动力学。

收稿日期: 2012-02-28

  修回日期: 2012-07-25

  网络出版日期: 2012-08-09

基金资助

国家"863"计划(2011AA7052002);国家自然科学基金(11202162)

Exploring the Characteristics of Power Density of Tracking PV Modules for High-altitude Stationary Solar-powered Airplanes

  • CHANG Min ,
  • ZHOU Zhou ,
  • CHENG Ke ,
  • WANG Rui
Expand
  • 1. Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi’an 710065, China;
    2. School of Power and Energy, Northwestern Polytechnical University, Xi’an 710072, China

Received date: 2012-02-28

  Revised date: 2012-07-25

  Online published: 2012-08-09

Supported by

National High-tech Research and Development Program of China (2011AA7052002); National Natural Science Foundation of China (11202162)

摘要

光伏组件面功率特性是影响太阳能飞机性能指标的关键因素之一。首先建立了考虑光伏组件表面温度、太阳能飞机飞行高度、纬度及一年四季等因素的光伏组件面功率模型,分析了光伏组件在一年范围内的日均直射、日均水平面功率随飞行高度、纬度和季节等关键设计指标参数的变化规律,对比研究了3种跟踪采能方式下的主动式光伏组件(TPM)的逐时、日均面功率特性。结果表明:在一天的光照时间内和全年范围内,主动式光伏组件能显著提高光伏组件的面功率特性。然后,参考了典型的太阳能飞机"Helios"和"Zephyr",综合考虑能源与气动特性,初步设计了一种采用主动式光伏组件的高空驻留太阳能飞机布局方案,通过分析其日均净面功率特性得出:合理设计主动式光伏组件,可以显著提高太阳能飞机的日均净面功率约32%~66%,甚至可达116%。这些结论均说明,从采能效率和气动特性两方面综合来说,所提出的基于主动式光伏组件的布局设计思想在高空驻留太阳能飞机总体布局设计时具有良好的应用优势。

本文引用格式

昌敏 , 周洲 , 成柯 , 王睿 . 高空驻留太阳能飞机主动式光伏组件面功率特性研究[J]. 航空学报, 2013 , 34(2) : 273 -281 . DOI: 10.7527/S1000-6893.2013.0031

Abstract

The characteristics of power density of PV (photovoltaic) modules play a key part in the flight performance of solar-powered airplanes. Firstly, this paper establishes a model of power density for PV modules, taking into consideration the temperature of PV modules, flight altitude, flight latitude, and year-round seasons. Based on this model, this poper analyzes the variation of the day-average power density of PV modules for horizontal surfaces and surfaces perpendicular to the Sun. this paper presents a comparative study of the characteristics of power density of tracking PV modules (TPM) under three types of tracking methods, and the results show that tracking PV modules improve the power performance during both the daylight in one day and during a whole year. Then, based on two typical solar-powered airplanes, "Helios" and "Zephyr", this paper proposes a new concept of solar-powered airplane with tracking PV modules and analyzes their effects on improving the average net power density. The results show that the tracking PV modules can increase power density by 32% to 66%, and at times even up to 116% if well designed. From the point of view of both energy and aerodynamic efficiency, this paper shows that it is necessary to apply the tracking PV modules to designing stationary high-altitude solar-powered airplanes due to their superiorities.

参考文献

[1] Alexandru C, Pozna C. Simulation of a dual-axis solar tracker for improving the performance of a photovoltaic panel. Proceeding of the Institution of Mechanical Engineering, Part A: Journal of Power and Energy, 2010, 224(6): 797-811.

[2] Haws T D, Bowman W J. Thermal analysis of the pathfinder aircraft. AIAA-1999-735, 1999.

[3] Noth A. Design of solar powered airplanes for continuous flight. Suisse: Ecole Polytechnique Fédérale de Lausanne at ETH ZüRICH, 2008.

[4] Keidel B. Auslegung und simulation von hochflie-genden dauerhaft stationierbaren solardrohnen. München: Fakultät für Maschinenwesen at Technischen Universität München, 2000.

[5] Zhao Z M, Liu J Z, Sun X Y. Photovoltaic power generation and application. Beijing: Science Press, 2005: 43-72. (in Chinese) 赵争鸣, 刘建政, 孙晓英. 太阳能光伏发电及其应用. 北京: 科学出版社, 2005: 43-72.

[6] Durisch W, Urban J, Pmestad G. Characterisation of solar cells and modules under actual operating conditions. Renewable Energy, 1996, 8(1-4): 359-366.

[7] Incropera Frank P, Dewitt D P. Fundamentals of heat and mass transfer. 7th ed. New York: John Wiley & Sons, 2011.

[8] NOAA, NASA, USAF. NOAA-S/T 76-1562, US standard atmosphere. 1976.

[9] Kata J, Plotkin A. Low-speed aerodynamics: from wing theory to panel methods. New York: McGraw-Hill, Inc., 1991.

[10] Daniel P R. Aircraft design: a conceptual approach. 3rd ed. Washington D.C.: American Institute of Aeronautics and Astronautics, Inc., 1999: 280-289.

[11] Chang M, Zhou Z, Zheng Z C. Flight principles of solar-powered airplane and sensitivity analysis of its conceptual parameters. Journal of Northwestern Polytechnical University, 2010, 28(5): 792-796. (in Chinese) 昌敏, 周洲, 郑志成. 太阳能飞机原理及总体参数敏度分析. 西北工业大学学报, 2010, 28(5): 792-796.

文章导航

/