固体力学与飞行器总体设计

转子非包容失效安全性的计算机辅助分析方法

  • 张燕军 ,
  • 孙有朝 ,
  • 曾海军 ,
  • 陆中 ,
  • 王京娅
展开
  • 南京航空航天大学 民航学院, 江苏 南京 210016
张燕军,男,博士研究生。主要研究方向:虚拟设计与验证技术。Tel:025-84895963,E-mail:zhangyj_204@163.com;孙有朝,男,博士,教授,博士生导师。主要研究方向:飞机可靠性、安全性工程。Tel:025-84895963,E-mail:sunyc@nuaa.edu.cn

收稿日期: 2012-03-13

  修回日期: 2012-06-07

  网络出版日期: 2012-07-03

基金资助

中国民航局科技项目基金(MHRD200817, MHRD201123)

Computer Aided Analysis for Uncontained Rotor Failure Safety

  • ZHANG Yanjun ,
  • SUN Youchao ,
  • ZENG Haijun ,
  • LU Zhong ,
  • WANG Jingya
Expand
  • College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2012-03-13

  Revised date: 2012-06-07

  Online published: 2012-07-03

Supported by

CAAC Science and Technology Project (MHRD200817, MHRD201123)

摘要

转子非包容失效是威胁飞机飞行安全的典型特殊风险之一,为了分析其对飞机安全性的影响,开发了转子非包容失效安全性分析系统(URFSAS)。将飞机功能危险分析(FHA)中的灾难性功能危险与故障树分析(FTA)中的底事件及飞机数字样机中的设备模型形成映射关系,建立了需求信息关系模型。在CATIA环境下基于Monte Carlo法以随机飞散角和平动角对转子碎片及其扫掠路径作空间几何变换,基于区域划分和层次包围盒法检测失效的飞机设备,通过故障树最小割集与仿真结果数据的对比分析,实现了对转子非包容失效所触发最小割集的识别和安全性的定量分析。最后,以某型飞机的应用实例分析,表明了该系统的有效性和实用性。

本文引用格式

张燕军 , 孙有朝 , 曾海军 , 陆中 , 王京娅 . 转子非包容失效安全性的计算机辅助分析方法[J]. 航空学报, 2013 , 34(2) : 291 -300 . DOI: 10.7527/S1000-6893.2013.0033

Abstract

Uncontained rotor failure is one of the typical risks that impose a particular threat on the safety of an aircraft. In this work, an uncontained rotor failure safety analysis system (URFSAS) is developed to facilitate its safety analysis. The relationship model of information required is provided by the relationship mapping between the catastrophic hazard of aircraft functional hazard analysis (FHA), the failure mode of the basic events of fault tree analysis (FTA) and the parts of aircraft digital mock-up. A simulation method based on Monte Carlo is proposed. All the parameters are set in the CATIA environment. Rotor fragment and its sweep path model are geometrically transformed. Space decomposition and hierarchical bounding are used to detect collision. Fault tree minimal cut sets generated are analyzed in comparison with simulation results. The hazard that is triggered by an uncontained fragment is recognized with the quantitative analysis of the uncontained rotor failure safety provided. Finally, an application instance is presented, which indicates that the URFSAS is valid and practical.

参考文献

[1] SAE-ARP4761. Guidelines and methods for conducting the safety assessment process on airborne systems and equipments. America: The Engineering Society for Advancing Mobility Land Sea Air and Space, 1996.
[2] Rao J S. History of rotating machinery dynamics. Germany: Springer, 2011: 327-340.
[3] Stotler C T. Development of advanced lightweight systems containment final report. NASA-CR-165212, 1981.
[4] Lane A D. Development of an advanced fan blade containment system. DOT/FAA/CT-89/20, 1989.
[5] Presley K L. Assessment of an advanced containment system. DOT/FAA/AR-97/82, 1999.
[6] Frankenberger C E. FAA T53-L-13L Turbine fragment containment test. DOT/FAA/AR-98/22, 1998.
[7] Wu R W H, Witmer E A. Approximate analysis of containment/deflection ring response to engine rotor fragment impact. Journal of Aircraft, 1973, 10: 28-37.
[8] Dewhurst T B, Tang P. Use of imposed displacements to determine impact forces in a multiple blade shed incident. American Society of Mechanical Engineers, 93-GT-127, 1993.
[9] Sarkar S, Atluri S N. Effects of multiple blade interaction on the containment of blade fragments during a rotor failure. Finite Elements in Analysis and Design, 1996, 23(2-4): 211-223.
[10] Lesure D R. Experimental investigations of material models for Ti-6Al-4V titanium and 2024-T3 aluminum. DOT/FAA/AR-00/25, 2000.
[11] Michael J, Lerch B A. Effects of heat treatment on the ballistic impact properties of inconel 718 for jet engine fan containment applications. International Journal of Impact Engineering, 2000, 25(8): 715-733.
[12] MacDonald B J. A computational and experimental analysis of high energy impact to sheet metal aircraft structures. Journal of Materials Processing Technology, 2002, 124(1-2): 92-98.
[13] Knight N F, Jr, Jaunky N, Lawson R E, et al. Penetration simulation for uncontained engine debris impact on fuselage-like panels using LS-DYNA. Finite Elements in Analysis and Design, 2000, 36(2): 99-133.
[14] Varas D, Zaera R, López-Puente J. Numerical modeling of partially filled aircraft fuel tanks submitted to hydrodynamic ram. Aerospace Science and Technology, 2012, 16(1): 19-28.
[15] Bao H B, Fu R H, Wang W. Research on hazard protection design of uncontained rotor failure on commercial aircraft. Journal of Safety Science and Technology, 2011, 7(11): 194-198. (in Chinese) 鲍海滨, 付仁合, 王伟. 民机非包容性转子失效危害防护设计研究. 中国安全生产科学技术, 2011, 7(11): 194-198.
[16] AC 20-128A Design considerations for minimizing hazards caused by uncontained turbine engine and auxiliary power unit rotor failure. Washington D.C.: Federal Aviation Administration, 1997.
[17] Ericson C. Real-time collision detection. Liu T H, translated. Beijing: Tsinghua University Press, 2010: 176-181. (in Chinese) Ericson C. 实时碰撞检测算法技术. 刘天慧, 译. 北京:清华大学出版社, 2010: 176-181.
文章导航

/