考虑禁飞圆的滑翔式机动弹道与气动特性参数耦合设计
收稿日期: 2012-01-21
修回日期: 2012-03-26
网络出版日期: 2013-01-19
Coupled Design of Maneuver Glide Reentry Trajectory and Aerodynamic Characteristic Parameters Considering No-fly Zone
Received date: 2012-01-21
Revised date: 2012-03-26
Online published: 2013-01-19
为获得滑翔式再入飞行器最佳气动与弹道机动性能,针对规避禁飞圆的远程滑翔式再入问题提出了一种机动弹道与气动特性参数耦合设计方法。耦合设计外环以气动特性参数为设计变量,基于抛物阻力极线模型提取最大升阻比和对应升力系数为气动特性参数;耦合设计内环以泛化升力系数和侧倾角为设计变量,获得给定升阻特性下能规避禁飞圆且满足再入走廊要求的滑翔式再入轨迹。耦合设计问题以再入驻点总热流最小为优化目标,以再入走廊、终端位置和速度为约束,求解满足弹道机动要求且目标函数最小的最佳气动特性参数。提出了一种规避禁飞圆的侧向几何制导逻辑用于内环轨迹设计。仿真算例得出禁飞圆半径越大,需要的滑翔式再入飞行器最大升阻比越大,且再入轨迹刚好能绕过禁飞圆。仿真结果验证了耦合设计方法和侧向制导逻辑的有效性,该方法可为飞行器方案设计时的气动布局选型等工作提供参考。
雍恩米 , 钱炜祺 , 唐伟 , 冯毅 . 考虑禁飞圆的滑翔式机动弹道与气动特性参数耦合设计[J]. 航空学报, 2013 , 34(1) : 66 -75 . DOI: 10.7527/S1000-6893.2013.0009
A coupled maneuver trajectory and aerodynamic characteristic parameters design approach considering no-fly zone is developed to obtain the best aerodynamic and maneuver performance of a glide reentry vehicle. The aerodynamic characteristic parameters achieved by a parabola drag model are taken as the design variables of the outer loop of the coupled design. In the inner loop, the normalized lift coefficient and bank angle are modulated to get a reentry trajectory while avoiding the no-fly zone at a given lift-drag ratio. For the goal of the minimization of the heat load, the best aerodynamic property parameters are designed to achieve the maneuver ability with the constraints of the position and velocity. A lateral geometry guidance is developed to generate the reentry trajectory in the inner loop. The numerical simulation indicates that the larger the radius of the no-fly zone is, the higher the lift-drag ratio is required of the vehicle for the reentry trajectory to just go around the no-fly zone. The results demonstrate that the coupled design approach is effective and can provide a useful reference for aerodynamic configuration design.
[1] Roberto A, Michèle L, Ryan P S, et al. Aerogravity-assist maneuvers: coupled trajectory and vehicle shape optimization. Journal of Spacecraft and Rockets, 2007, 44(5): 1051-1059.
[2] Joshua E J, Mark J L,Ryan P S. Coupled entry heat shied/trajectory optimization for lunar return. AIAA-2008-6557, 2008.
[3] Periklis P, Prabhakar S. Trajectory coupled aerothermodynamics modeling for atmospheric entry probes at hypersonic velocities, AIAA-2006-1034, 2006.
[4] Timothy R J, Richard G C. Three-dimensional trajectory optimization satisfying waypoint and no-fly zone constraints. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 551-571.
[5] Hu Z D. Research on trajectory planning and guidance for space-based strike weapon. Changsha: National University of Defense Technology, 2009.(in Chinese) 胡正东. 天基对地打击武器轨道规划与制导技术研究. 长沙: 国防科学技术大学, 2009.
[6] Xie Y, Liu L H, Tang G J, et al. Weaving maneuver trajectory design for hypersonic glide vehicles. Acta Aeronautica et Astronautica Sinica, 2011, 32(12): 2174-2181. (in Chinese) 谢愈, 刘鲁华, 汤国建, 等. 高超声速滑翔飞行器摆动式机动突防弹道设计. 航空学报, 2011, 32(12): 2174- 2181.
[7] Vinh N X, Der M M. Optimal multiple-pass aeroassisted plane change. Acta Astronautica, 1990, 21(11/12): 749-758.
[8] Ruan C R. Optimal trajectory in atmospheric flight. Beijing: Press of Astronautics, 1987: 42-43. (in Chinese) 阮春荣. 大气中飞行的最优轨迹.北京:宇航出版社,1987: 42-43.
[9] Vinh N X, Busemann A, Culp R D. Hypersonic and planetary entry flight mechanics. Ann Arbor, MI: University of Michigan Press, 1980: 26-27.
[10] Jia P R, Chen K J, He L. Long-range rocket ballistics. Changsha: Press of National University of Defense Technology, 1993: 40-42. (in Chinese) 贾沛然, 陈克俊, 何力. 远程火箭弹道学. 长沙: 国防科学技术大学出版社, 1993: 40-42.
[11] Yong E M, Tang G J, Chen L. Rapid trajectory planning for hypersonic unpowered long-range reentry vehicles with multi-constraints. Journal of Astronautics, 2008, 29(1):46-51. (in Chinese) 雍恩米, 唐国金, 陈磊. 高超声速无动力远程滑翔飞行器多约束条件下的轨迹快速生成.宇航学报,2008,29(1):46-51.
[12] Yong E M, Chen L, Tang G J. Trajectory optimization of hypersonic gliding reentry vehicle based on the physical programming. Acta Aeronautica et Astronautica Sinica, 2008, 29(5): 1091-1096. (in Chinese) 雍恩米, 陈磊, 唐国金. 基于物理规划的高超声速飞行器滑翔式再入轨迹优化.航空学报, 2008, 29(5): 1091- 1096.
[13] Hu J X. Entry guidance technology study for reusable launch vehicle. Changsha: National University of Defense Technology, 2007. (in Chinese) 胡建学. 可重复使用跨大气层飞行器再入制导研究. 长沙: 国防科学技术大学, 2007.
[14] Zhang Z C, Pan H L, Liu C P, et al. Hypersonic aerothermodynamics and thermal protection. Beijing: Press of National Defense Industry, 2003: 77-79.(in Chinese) 张志成, 潘海林, 刘初平, 等. 高超声速气动热和热防护. 北京: 国防工业出版社, 2003: 77-79.
[15] Timothy R J. Common aero vehicle autonomous reentry trajectory optimization satisfying waypoint and no-fly zone constraints. California: Air Force Institute of Technology, Air University, 2007.
[16] Shen Z J. On-board three-dimensional constrained entry flight trajectory generation.Ames, Iowa: Iowa State University, 2002.
/
〈 | 〉 |