电子与自动控制

电力作动器用高可靠性永磁容错电机控制系统的设计及其试验分析

  • 郝振洋 ,
  • 胡育文
展开
  • 南京航空航天大学 江苏省新能源发电与电能变换重点实验室, 江苏 南京 210016
郝振洋,男,博士,讲师。[JP2]主要研究方向:电力电子与电力传动。[JP]Tel:025-84890382,E-mail:zhenyang_hao@nuaa.edu.cn[LL]胡育文,男,教授,博士生导师。主要研究方向:飞机、车辆电源系统,功率电子与电机控制。

收稿日期: 2012-01-20

  修回日期: 2012-02-24

  网络出版日期: 2013-01-19

基金资助

中国博士后科学基金(20110491408); 航空科学基金(2011ZC52039)

Design and Experimental Analysis on the Control System of High Reliability Fault Tolerant Permanent Magnet Motor Used in Electric Actuator

  • HAO Zhenyang ,
  • HU Yuwen
Expand
  • Jiangsu Province Key Laboratory of New Energy Generation and Power Conversion, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2012-01-20

  Revised date: 2012-02-24

  Online published: 2013-01-19

Supported by

China Postdoctoral Science Foundation (20110491408); Aeronautical Science Foundation of China (2011ZC52039)

摘要

针对电力作动器的高可靠性要求,结合转子磁钢采用离心结构的六相十极永磁容错电机(FTPMM),提出一种基于电流直接控制法的容错控制系统。当电机绕组或功率管发生断路及短路故障时,系统无需硬件故障辨识信号及软件算法切换就可实现系统的强容错功能,即故障后电机输出转速不变,输出功率与发生故障的相数有关,当电机系统出现一相、两相、三相故障时,电机分别可输出100%、80%、60%的额定功率;设计了一台750 W六相十极永磁容错电机的原理样机及其全数字化控制器,证明了该容错控制策略的正确性及整个电机控制系统的强容错性及可行性。

本文引用格式

郝振洋 , 胡育文 . 电力作动器用高可靠性永磁容错电机控制系统的设计及其试验分析[J]. 航空学报, 2013 , 34(1) : 141 -152 . DOI: 10.7527/S1000-6893.2013.0017

Abstract

For the six-phase-ten-pole fault tolerant permanent magnet motor (FTPMM) with a centrifugal permanent magnet on the surface of its rotor, a strong fault tolerant system is proposed and realized with the current direct control strategy to improve the reliability of the electric actuator with the motor. Without fault diagnosis and algorithm switching, this method enables the motor speed to remain invariant. Motor output power corresponds to the number of phases which fail, i.e., with one, two, and three phases broken down the motor output will be respectively 100%, 80%, and 60% of the rated power. A 750 W principle prototype of the fault tolerant permanent magnet motor with a digital controller is designed and tested. The experiment results validate the theoretical prediction and show the strong fault tolerant capacity and feasibility of the whole control system.

参考文献

[1] Coleman A S, Hansen I G. The development of a highly reliable power management and distribution system for civil transport aircraft. NASA-TM-106697, 1994.
[2] Hao Z Y, Hu Y W, Huang W X. Development of fault tolerant permanent magnet machine and its control system and its control system in electro-mechanical actuator. Acta Aeronautica et Astronautica Sinica, 2008, 29(1): 65-74. (in Chinese) 郝振洋, 胡育文, 黄文新. 电力作动器中永磁容错电机及其控制系统的发展. 航空学报, 2008, 29(1): 65-74.
[3] Mecrow B C, Jack A G, Atkinson D J, et al. Design and testing of a four-phase fault-tolerant permanent-magnet machine for an engine fuel pump. IEEE Transactions on Energy Conversion, 2004, 19(4): 671-678.
[4] Mecrow B C, Jack A G, Haylock J A, et al. Fault tolerant permanent magnet machine drives. IEEE Proceeding-Electrical Power Applications, 1996, 143(6): 437-442.
[5] Haylock J A, Mecrow B C, Jack A G, et al. Enhanced current control of high-speed PM machine drives through the use of flux controller. IEEE Transactions on Industry Applications, 1999, 35(5): 1030-1038.
[6] Green S, Atkinson D J, Jack A G, et al. Senseless operation of a fault tolerant PM drive. IEE Proceedings-Electric Power Applications, 2003, 135(2): 117-125.
[7] Ede J D, Atallah K, Wang J B, et al. Effect of optimal torque control on rotor loss of fault-tolerant permanent magnet brushless machines. IEEE Transactions on Magnetic, 2002, 38(5): 3291-3293.
[8] Wang J B, Atallah K, Howe D. Optimal torque control of fault-tolerant permanent magnet brushless machines. IEEE Transactions on Magnetic, 2003, 39(5): 2962-2964.
[9] Bianchi N, Bolognani S, Pre M D. Strategies for the fault-tolerant current control of a five-phase permanent-magnet motor. IEEE Transactions on Industry Applications, 2007, 43(4): 960-970.
[10] Wang H N, Zhao Z M, Liu Y F. New highly fault-tolerant integrated motor control system. Advance Technology of Electrical Engineering and Energy, 2001, 20(3): 29-32. (in Chinese) 王海南, 赵争鸣, 刘云峰. 新型高容错电机集成系统的设计. 电工电能新技术, 2001, 20(3): 29-32.
[11] Liu W T, Pang K W, Li W X. Research on tolerant control of marine muti-phase permanent magnet synchronous motors propulsion system. Electrical Drive Automation, 2004, 26(2): 19-22. (in Chinese) 刘伟亭, 庞科旺, 李文秀. 舰船多相永磁同步电机推进系统容错控制研究. 电气传动自动化, 2004, 26(2): 19-22.
[12] Hao Z Y, Hu Y W, Huang W X. Anaysis of inductance and harmonics of fault tolerant permanent magnet machine in electro-mechanical actuators. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 1063-1069. (in Chinese) 郝振洋, 胡育文, 黄文新. 电力作动器中永磁容错的电感和谐波分析. 航空学报, 2009, 30(6): 1063-1069.
[13] Lee J H, Kim D H, Park I H. Minimization of higher back-EMF harmonics in permanent magnet motor using shape design sensitivity with B-spline parameterization. IEEE Transactions on Magnetic, 2003, 39(3): 1269-1272.
[14] Bianchi N, Bolognani S. Design techniques for reduing the cogging torque in surface-mounted PM motors. IEEE Transactions on Industry Applications, 2002, 38(5): 1259-1265.
[15] Li Z, Jiang S Z, Zhu Z Q, et al. Analytical methods for minimizing cogging torque in permanent-magnet machines. IEEE Transactions on Magnetic, 2009, 45(4): 2023-2031.
[16] Hao Z Y, Hu Y W, Huang W X, et al. The research on key technologies of fault-tolerant permanent magnet motor in the drive system of electric vehicle. VPPC08, 2008: 1-4.
文章导航

/