电子与自动控制

直连式三体绳系卫星姿态鲁棒最优跟踪控制

  • 黄静 ,
  • 刘刚 ,
  • 马广富
展开
  • 哈尔滨工业大学 航天学院,黑龙江 哈尔滨 150001

收稿日期: 2011-07-21

  修回日期: 2011-08-17

  网络出版日期: 2012-04-20

基金资助

国家自然科学基金 (61174200);高等学校博士学科点专项科研基金 (20102302110031)

Nonlinear Optimal Attitude Tracking Control of Uncertain Three-inline Tethered Satellite Systems

  • HUANG Jing ,
  • LIU Gang ,
  • MA Guangfu
Expand
  • School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

Received date: 2011-07-21

  Revised date: 2011-08-17

  Online published: 2012-04-20

摘要

针对存在参数不确定性以及外部有界干扰的直连式三体旋转绳系卫星系统姿态跟踪控制问题,提出了一种分布式鲁棒最优控制方法。该方法首先针对单体绳系卫星姿态模型,在不考虑参数不确定性和干扰的条件下,应用Hamilton-Jacobi-Bellman方程设计了最优控制器;接着,考虑到实际系统存在参数不确定性和干扰,采用自适应与鲁棒误差积分方法在线学习参数不确定性和有界干扰,与最优控制器结合设计了鲁棒最优控制器,使闭环系统满足了性能指标达到最小的要求,并应用Lyapunov稳定性定理证明了其闭环系统的渐近稳定性。进一步考虑到绳系卫星系统的运动同步性,将单体绳系卫星姿态控制器设计扩展至直连式三体绳系卫星姿态系统,设计了分布式鲁棒最优控制器。最后在MATLAB/Simulink平台上进行了仿真,验证了方法的可行性与有效性,表明其具有潜在的应用前景。

本文引用格式

黄静 , 刘刚 , 马广富 . 直连式三体绳系卫星姿态鲁棒最优跟踪控制[J]. 航空学报, 2012 , (4) : 679 -687 . DOI: CNKI:11-1929/V.20110906.1126.008

Abstract

An optimal robust decentralized attitude tracking control strategy is proposed for a three-inline spinning tethered satellite system with uncertainty in the dynamics. For a single-tethered satellite, a Hamilton-Jacobi-Bellman optimization scheme is used along with an adaptive method combined with a robust integral of error method that can learn the dynamic uncertainty and bounded disturbances asymptotically. Specifically, a Lyapunov stability analysis is performed to show that the adaptive and robust integral of error term asymptotically identifies the unknown dynamics, yielding semiglobal asymptotic tracking. In addition, the system converges to a state space system that has a quadratic performance index which is optimized by an additional control element. By exploiting the geometric symmetries, the three-inline tethered satellites system is reduced into a system of simpler stable dynamics, and a decentralized attitude tracking controller is developed for it. Numerical simulation results validate the stability of the three-inline tethered satellite system by implementing a tracking control law derived from the reduced dynamics.

参考文献

[1] Jin D P, Wen H, Hu H Y. Modeling, dynamics and control of cable systems. Advances in Mechanics, 2004, 34(3): 304-313. (in Chinese) 金栋平, 文浩, 胡海岩. 绳索系统的建模、动力学和控制. 力学进展, 2004, 34(3): 304-313.
[2] Quinn D A, Folta D C. A tethered formation flying concept for the SPECS mission. Proceedings of the 23rd Rocky Mountain Guidance and Control Conference. 2000: 183-196.
[3] Misch A K, Hall C D. Dynamics and control of rotating tethered satellite systems. Journal of Spacecraft and Rockets, 2007, 44(3): 649-659.
[4] Kumar K D. Review of dynamics and control of nonelectrodynamic tethered satellite systems. Journal of Spacecraft and Rockets, 2006, 43(4): 705-720.
[5] Levin E M. Dynamics analysis of space tether missions. Advances in the Astronautical Science. San Diego, CA: American Astronautical Society, 2007.
[6] Wang W, Li J F, Baoyin H X. The deployment and retrieval control of the tethered satellite based on the PSO algorithm. Aerospace Control and Application, 2009, 35(4): 48-51. (in Chinese) 王维, 李俊峰, 宝音贺西. 基于粒子群算法的绳系卫星展开与回收控制. 空间控制技术与应用, 2009, 35(4): 48-51.
[7] Liu L L, Wen H, Jin D P. Optimal control of orbit transfer for a tethered subsatellite system. Acta Aeronautica et Astronautica Sinica, 2009, 30(2): 332-336. (in Chinese) 刘丽丽, 文浩, 金栋平. 绳系卫星轨道转移的最优控制. 航空学报, 2009, 30(2): 332-336.
[8] Williams P. Optimal control of a spinning double-pyramid earth-pointing tether formation. The 57th International Astronautical Congress. 2006.
[9] Gates S S. Muti-tethered space-based interferometers: particle system mode. NRL/MR/8231-01-8579, Naval Research Laboratory, 2001.
[10] Kim M, Hall C D. Control of a rotating variable-length tethered system. Journal of Guidance, Control, and Dynamics, 2004, 27(5): 849-858.
[11] Kim M, Hall C D. Dynamics and control of rotating tethered satellite systems. Journal of Spacecraft and Rockets, 2007, 44(3): 649-659.
[12] Menon C, Bombardelli C. Self-stabilizing attitude control for spinning tethered formations. Acta Astronautica, 2007, 60(10-11): 828-833.
[13] Lemke L G, Powell J D, He X. Attitude control of tethered spacecraft. The Journal of Astronautical Sciences, 1987, 35(1): 41-55.
[14] Bergamaschi S, Bonon F. Coupling of tether lateral vibration and subsatellite attitude motion. Journal of Guidance, Control, and Dynamics, 1992, 15(5): 1284-1286.
[15] Pradhan S, Modi B J, Misra A K. Tether-platform coupled control. Acta Astronautica, 1999, 44(5-6): 243-256.
[16] Modi V J, Gilardi G, Misra A K. Attitude control of space platform based tethered satellite system. Journal of Aerospace Engineering, 1998, 11(2): 24-31.
[17] Williams P, Watanabe T, Blanksby C. Libration control of flexible tethers using electromagnetic forces and movable attachment. Journal of Guidance, Control, and Dynamics, 2004, 27(5): 882-897.
[18] Chung S J, Slotine J J E, Miller D W. Nonlinear model reduction and decentralized control of tethered formation flight. Journal of Guidance, Control, and Dynamics, 2007, 30(2): 390-400.
[19] Xian B, Dawson D M, Queiroz M S, et al. A continuous asymptotic tracking control strategy for uncertain nonlinear systems. IEEE Transactions on Automatic Control, 2004, 49(7): 1206-1211.
[20] Kim Y, Lewis F, Dawson D. Intelligent optimal control of robotic manipulator using neural networks. Automatica, 2000, 36(9): 1355-1364.
[21] Khalil H K. Nonlinear systems. 3rd ed. Upper Saddle River, NJ: Prentice-Hall, 2002.
[22] Wang W, Slotine J J E. On partial contraction analysis for coupled nonlinear oscillators. Biological Cybernetics, 2005, 92(1): 38-53.
文章导航

/