针对含多设计参数的典型民机机身下部结构耐撞性设计,提出了一种设计方法,该方法以最小化客舱地板的初始加速度峰值与最大化参考压溃状态的结构内能为优化双目标,通过Kriging模型对结构的冲击响应进行预测,采用非支配排序遗传算法II(NSGA-II)对双目标进行优化,进而由Nash-Pareto策略获得最优方案。为了得到最优设计方案,同时研究设计参数对机身结构耐撞性的影响,提出最大化期望提高与最大化预测方差同步加点准则建立代理模型。采用该设计方法,以典型民机机身下部结构设计问题为算例,对客舱地板支撑结构、货舱地板和泡沫构件形状参数进行优化。结果表明,相对原始设计客舱地板的加速度峰值降低约18.3%,次高加速度峰值也得到有效降低,改善了机身结构的耐撞性;Kriging模型预测响应与有限元分析结果误差小于1%,说明了设计方法的有效性。
[1] Zhang H, Wei R X. Crashworthiness design guide for general aircraft. Beijing: Aviation Industry Press, 2009: 1-18. (in Chinese) 张弘, 魏荣祥. 通用飞机抗坠撞设计指南. 北京: 航空工业出版社, 2009: 1-18.
[2] Civil Aviation Administration of China. CCAR-25-R3 China civil aviation rules: Vol. 25. Beijing: Civil Aviation Administration of China, 2001. (in Chinese) 中国民用航空总局. CCAR-25-R3 中国民用航空规章: 第25部. 北京: 中国民用航空总局, 2001.
[3] Federal Aviation Administration. Full-scale transport controlled impact demonstration program. NASA-TM-89642, 1987.
[4] Carden H D. Full-scale crash-test evaluation of two load-limiting subfloors for general aviation airframes. NASA-TP-2380, 1984.
[5] Castle C B, Alfaro-Bou E. Light airplane crash tests at three roll angles. NASA-TP-1477, 1979.
[6] Fasanella E L, Alfaro-Bou E, Hayduk R J. Impact data from a transport aircraft during a controlled impact demonstration. NASA-TP-2589, 1986.
[7] Ren Y R, Xiang J W. A comparative study of the crashworthiness of civil aircraft with different strut configurations. International Journal of Crashworthiness, 2010, 15(3): 321-330.
[8] Ren Y R, Xiang J W, Luo Z P, et al. Effect of cabin-floor oblique strut on crashworthiness of typical civil aircraft fuselage section. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 271-276. (in Chinese) 任毅如, 向锦武, 罗漳平, 等. 客舱地板斜撑杆对民机典型机身段耐撞性能的影响. 航空学报, 2010, 31(2): 271-276.
[9] Gong J J, Wang X W. Numerical simulation of energy absorption capability of composite waved beams. Acta Aeronautica et Astronautica Sinica, 2005, 26(3): 298-302. (in Chinese) 龚俊杰, 王鑫伟. 复合材料波纹梁吸能能力的数值模拟. 航空学报, 2005, 26(3): 298-302.
[10] Liu R T, Wang X W, Jia S P. Experimental study on energy absorption of carbon-epoxy waved beams. Acta Aeronautica et Astronautica Sinica, 2001, 22(1): 56-61. (in Chinese) 刘瑞同, 王鑫伟, 荚淑萍. 碳纤维-环氧树脂波纹梁吸能能力的试验研究. 航空学报, 2001, 22(1): 56-61.
[11] Zheng J Q, Xiang J W, Luo Z P, et al. Crashworthiness layout of civil aircraft using waved-plate for energy absorption. Acta Aeronautica et Astronautica Sinica, 2010, 31(7): 1396-1402. (in Chinese) 郑建强, 向锦武, 罗漳平, 等. 民机机身耐撞性设计的波纹板布局. 航空学报, 2010, 31(7): 1396-1402.
[12] He H, Chen G P, Zhang J B. Crash simulation of fuselage section with fuel tank. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 627-633. (in Chinese) 何欢, 陈国平, 张家滨. 带油箱结构的机身框段坠撞仿真分析. 航空学报, 2008, 29(3): 627-633.
[13] Meng F X, Zhou Q, Yang J L. Improvement of crashworthiness behaviour for simplified structural models of aircraft fuselage. International Journal of Crashworthiness, 2009, 14(1): 83-97.
[14] Liao X, Li Q, Yang X J, et al. A two-stage multi-objective optimization of vehicle crashworthiness under frontal impact. International Journal of Crashworthiness, 2008, 13(3): 279-288.
[15] Craig K J, Stander N, Dooge D A, et al. Automotive crashworthiness design using response surface-based variable screening and optimization. Engineering Computations, 2005, 22(1): 38-61.
[16] Wang H L, Lin Z Q, Jin X L. Optimal design of thin-walled sections for structural crashworthiness based on the response surface model. Chinese Journal of Applied Mechanics, 2003, 20(3): 61-65. (in Chinese) 王海亮, 林忠钦, 金先龙. 基于响应面模型的薄壁构件耐撞性优化设计. 应用力学学报, 2003, 20(3): 61-65.
[17] Forsberg J, Nilsson L. On polynomial response surfaces and Kriging for use in structural optimization of crashworthiness. Structural and Multidisciplinary Optimization, 2005, 29(3): 232-243.
[18] Wang B G, Liu S Y, Li X, et al. Two improved algorithms based on Nash-Pareto strategy and their applications. Journal of Aerospace Power, 2008, 23(2): 374-382. (in Chinese) 王保国, 刘淑艳, 李翔, 等. 基于Nash-Pareto策略的两种改进算法及其应用. 航空动力学报, 2008, 23(2): 374-382.
[19] Jackson K E, Fasanella E L, Kellas S. Development of a scale model composite fuselage concept for improved crashworthiness. Journal of Aircraft, 2001, 38(1): 95-103.
[20] Jackson K E. Impact testing and simulation of a crashworthy composite fuselage concept. International Journal of Crashworthiness, 2001, 6(1): 107-121.
[21] Mu X F, Yao W X, Yu X Q, et al. A survey of surrogate models used in MDO. Chinese Journal of Computational Mechanics, 2005, 22(5): 608-612. (in Chinese) 穆雪峰, 姚卫星, 余雄庆, 等. 多学科设计优化中常用代理模型的研究. 计算力学学报, 2005, 22(5): 608-612.
[22] Gao Y H. Optimization methods based on Kriging surrogate model and their application in injection molding. Dalian: Dalian University of Technology, 2009. (in Chinese) 高月华. 基于Kriging代理模型的优化设计方法及其在注塑成型中的应用. 大连: 大连理工大学, 2009.
[23] Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 1998, 13(4): 455-492.
[24] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[25] Adams A, Lankarani H M. A modern aerospace modeling approach for evaluation of aircraft fuselage crashworthiness. International Journal of Crashworthiness, 2003, 8(4): 401-413.
[26] Kumakura I, Minegishi M, Iwasaki K. Impact simulation of simplified structural models of aircraft fuselage. 2000 World Aviation Conference. 2000.
[27] Byar A. Crashworthiness study of a Boeing 737 fuselage. Philadelphia: Drexel University, 2004.
[28] He H. Key technology of general aircraft crash simulation and crashworthiness design. Nanjing: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 2007. (in Chinese) 何欢. 通用飞机结构耐撞性分析与设计关键技术研究. 南京: 南京航空航天大学航空宇航学院, 2007.
[29] Lophaven S N, Nielsen H B, Sndergaard J. DACE: a MATLAB Kriging toolbox. Technical Report IMM-TR-2002-12. Denmark: Technical University of Denmark, 2002.
[30] Aslett R, Buck R J, Duvall S G, et al. Circuit optimization via sequential computer experiments: design of an output buffer. Journal of the Royal Statistical Society: Series C, Applied Statistics, 1998, 47(1): 31-48.