流体力学与飞行力学

一种基于共轭方程法求解黏性反问题的简化方法

  • 杜磊 ,
  • 宁方飞
展开
  • 北京航空航天大学 能源与动力工程学院, 北京 100191

收稿日期: 2011-06-21

  修回日期: 2011-09-23

  网络出版日期: 2012-04-20

An Approximate Method for Viscous Inverse Design Based on Adjoint Equations

  • DU Lei ,
  • NING Fangfei
Expand
  • School of Jet Propulsion, Beihang University, Beijing 100191, China

Received date: 2011-06-21

  Revised date: 2011-09-23

  Online published: 2012-04-20

摘要

对于给定压力分布的黏性气动反问题,考虑到壁面微小扰动造成的压力变化主要由势流作用引起,因此可以简化用以获得目标函数对设计变量敏感性导数的共轭方程。将黏性流场插值到粗网格中作为彻体力模型方程的解,则其相应的共轭方程将以简单的源项取代原方程中复杂的黏性项。由于在粗网格中求解,网格数减少,同时收敛速度加快,简化的共轭方程计算时间可以减少到黏性方程的十分之一。典型的算例结果表明,对于附着的边界层流动简化方法计算得到的敏感性导数具有较高的精度,能够有效完成反问题设计且减少总的计算耗时。

本文引用格式

杜磊 , 宁方飞 . 一种基于共轭方程法求解黏性反问题的简化方法[J]. 航空学报, 2012 , (4) : 597 -606 . DOI: CNKI:11-1929/V.20111031.1058.006

Abstract

For the viscous aerodynamic inverse design with specified pressure distribution, in view of the fact that the pressure variation caused by wall perturbation is dominantly owing to its potential effect, an approximate adjoint equation is proposed to calculate the object function gradient with respect to the design variables. A viscous flow field of fine mesh is interpolated into the coarse mesh and the new mesh is treated as the solution of the viscous body force model. In this case, a simple source term replaces a complex viscous term in the original adjoint equations. The time cost by the approximate adjoint equations can be decreased to one tenth of the viscous equations because of the drastically reduced grid points of the coarse mesh and much faster convergence. The results of typical cases indicate that the sensitivity derivative gained by the approximate method has good accuracy and the inverse design can be completed efficiently with reduced total computational time.

参考文献

[1] Léonard O, Braembussche R. Design method for subsonic and transonic cascades with the prescribed Mach number distribution. Journal of Turbomachinery, 1992, 114(3): 553-560.
[2] Zannetti L, Pandolfi M. Inverse design techniques for cascades. NASA Report, No.CR-3836, 1984.
[3] Dulikravich G S, Baker D P. Aerodynamic shape inverse design using a fourier series method. AIAA-1999-0185, 1999.
[4] Daneshkhah K, Ghaly W. Aerodynamic inverse design for viscous flow in turbomachinery blading. Journal of Propulsion and Power, 2007, 23(4): 814-820.
[5] Chung J, Shim J, Lee K D. Inverse design of 3D transonic compressor blade using 3D Navier-Stokes flow physics. AIAA-2002-0103, 2002.
[6] Dang T. Inverse method for turbomachinery blade using shock capturing techniques. AIAA-1995-2465, 1995.
[7] Tiow W T, Zangeneh M. A three-dimensional viscous transonic inverse design method. GT-2000-0525, 2000.
[8] Jameson A. Aerodynamic design via control theory. Journal of Scientific Computing, 1988, 3(3): 233-260.
[9] Jameson A, Reuther J. Control theory based airfoil design using the Euler equations. AIAA-1994-4272, 1994.
[10] Jameson A. Optimum aerodynamic design using CFD and control theory. AIAA-1995-1729, 1995.
[11] Reuther J, Jameson A. Aerodynamic shape optimization of wing and wing-body configurations using control theory. AIAA-1995-0123, 1995.
[12] Tayler A C, Hou G W, Korivi V M. Sensitivity analysis, approximate analysis, and design optimization for internal and external viscous flows. AIAA-1991-3083, 1991.
[13] Eleshaky M E, Baysal O. Discrete aerodynamic sensitivity analysis on decomposed computational domains. Compu-ters & Fluids, 1994, 23(4): 595-611.
[14] Nadarajah S, Jameson A. Studies of the continuousand discrete adjoint approaches to vscous automatic aerodynamic shape optimization. AlAA-2001-2530, 2001.
[15] Yang S C, Hsiao-Yuan W, Liu F. Aerodynamic design of cascades by using an adjoint equation method. AIAA-2003-1068, 2003.
[16] Wang D X, He L. Adjoint aerodynamic design optimization for blades in multi-stage turbomachines: part I—methodology and verification. GT-2008-50208, 2008.
[17] Wang D X, He L, Li, Y S, et al. Adjoint aerodynamic design optimization for blades in multi-stage turbomachines: part II—validation and application. GT-2008-50209, 2008.
[18] Yang X D, Qiao Z D. Optimum aerodynamic design of transonic wing based on adjoint equations method. Acta Aeronautica et Astronautica Sinica, 2003, 24(1): 1-5.(in Chinese) 杨旭东, 乔志德. 基于共轭方程法的跨音速机翼气动力优化设计. 航空学报, 2003, 24(1): 1-5
[19] Li Y C, Feng Z P. Three-dimensional aerodynamic design of turbine blades using the adjoint method. GT-2008-51225, 2008.
[20] Jameson A, Alonso J J, Reuther L, et al. Aerodynamic shape optimization techniques based on control theory. AIAA-1998-2538, 1998.
[21] Zymaris A S, Papadimitriou D I, Giannakoglou K C, et al. Continuous adjoint approach to the Spalart-Allmaras turbulence model for incompressible flows. Computers & Fluids, 2009, 38(8): 1528-1538.
[22] Zymaris A S, Papadimitriou D I, Giannakoglou K C, et al. Adjoint wall functions: a new concept foruse in aerodynamic shape optimization. Journal of Computational Physics, 2010, 229(13): 5228-5245.
[23] Xu L. Assessing viscous body forces for unsteady calculations. Journal of Turbomachinery, 2003, 125(3): 425-432.
[24] Papadimitriou D I, Giannakoglou K C. A continuous adjoint method with objective function derivativs based on boundary integrals, for inviscid and viscous flows. Computers & Fluids, 2007, 36(2): 325-341.
[25] Liu C, Ning F F. Investigation on distributed viscous bodyforce modeling and its application. Journal of Aerospace Power, 2011, 26(1): 128-135. (in Chinese) 刘超, 宁方飞. 黏性彻体力建模方法及其应用. 航空动力学报, 2011, 26(1): 128-135.
[26] Ning F F. Numerical simulation of the transoniccompressor inner flow considering real geometrical complexity. Beijing: School of Jet Propulsion, Beihang University, 2002. (in Chinese) 宁方飞. 考虑真实几何复杂性的跨音压气机内部流动的数值模拟. 北京: 北京航空航天大学能源与动力工程学院, 2002.
[27] Du L, Ning F F. Aerodynamic inverse design method for low mach number airfoils. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1180-1188.(in Chinese) 杜磊, 宁方飞. 低速叶型气动反问题设计方法. 航空学报, 2011, 32(7): 1180-1188.
[28] Hicks R M, Henne P A. Wing design by numerical optimization. AIAA-1977-1247, 1977.
[29] Broyden G C. The convergence of a class of double-rank minimization algorithms. IMA Journal of Applied Mathematics, 1970, 6(3): 222-231.
文章导航

/