基于大涡模拟(LES)和边界元方法对轴流压气机叶栅湍流流场以及流场诱导的噪声进行计算,在不同叶栅安装角下研究来流攻角和来流雷诺数对叶栅气动噪声产生、辐射的影响。研究表明:来流雷诺数不变时,同一安装角下,随着来流攻角从-5°~20°变化,叶栅监测曲线上的声压级先减小后增大,在0°来流攻角下声压级达到最小。安装角为45°时,外场总声压级随来流攻角的分布与30°安装角变化趋势相近。但安装角为60°时,总声压级的变化则明显变缓。在0°来流攻角下,总声压级比安装角为30°和45°时增加了近6 dB,但在其他正来流攻角下,变化并不明显。叶栅的最小声压值出现在弦线方向附近,安装角改变时,最小声压级出现的位置也不同。安装角不变,随着来流雷诺数的增大,叶栅表面的分离减小,损失降低。但叶栅表面的压力脉动随着来流雷诺数的增大而增大,使外场辐射噪声增加。
The turbulent flow through an axial compressor cascade and the sound induced by the flow are computed based on a large eddy simulation(LES) model and the boundary element method. The influence of the freestream angle of attack and Reynolds number on sound generation and radiation in the cascade at different stagger angles are analyzed. The results indicate that the total sound pressure level first decreases, then increases when the stagger angle and Reynolds number are constant while the angle of attack changes from -5? to 20?. The minimum sound pressure level appears at the angle of attack of 0?. At stagger angle of 45?, the total sound pressure level of the cascade changes varying with angle of attack, the trend is similar to that of the stagger angle of 30?. However, at the stagger angle of 60?, the total sound pressure level changes more gently. At the angle of attack of 0?, the sound pressure level increases about 6 dB comparing with the case of the stagger angle of 30癮nd 45?. At other positive angles of attack, the changes are not obvious. The minimum sound pressure level appears at the direction of the cascade chord. The positions of the minimum sound pressure level vary with change of stagger angles. With a constant stagger angle, surface separation and flow loss decrease with the increase of the Reynolds number. However, the surface pressure fluctuation of cascade and the far-field radiation sound increase.
[1] Herrig J L, Emery J C, Erwin J R. Two-dimensional cascades of test of NACA 65-series compressor blades at low speeds. Washington D.C.: Langley Research Center, 1957.
[2] Zhang H L, Wang S T, Wang Z Q. Influence of incidence on secondary vortex in the compressor cascade. Journal of Aerospace Power, 2006, 21(1): 150-155. (in Chinese) 张华良, 王松涛, 王仲奇. 冲角对压气机叶栅内二次涡的影响. 航空动力学报, 2006, 21(1): 150-155.
[3] Zhang H L, Dong X Z, Tan C Q. A numerical investigation of flow separations in a two-dimensional compressor cascade. Journal of Engineering Thermophysics, 2008, 29(8): 1297-1300. (in Chinese) 张华良, 董学智, 谭春青. 扩压叶栅二维流动分离的数值模拟. 工程热物理学报, 2008, 29(8): 1297-1300.
[4] Zhang W L, Yuan W, Zhang J. Numerical simulation of trailing edge vortex shedding in a 2-D compressor cascade. Journal of Aerospace Power, 2002, 17(5): 556-560.(in Chinese) 张文龙, 袁巍, 张健. 压气机二维叶栅涡脱落的数值模拟. 航空动力学报, 2002, 17(5): 556-560.
[5] Tomimatsu S, Fujisawa N. Measurement of aerodynamic noise and unsteady flow field around a symmetrical airfoil. Journal of Visualization, 2002, 5(4): 381-388.
[6] Nakano T, Fujisawa N, Oguma Y, et al. Experimental study on flow and noise characteristics of NACA0018 airfoil. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(4): 511-531.
[7] Nakano T, Fujisawa N, Lee S. Measurement of tonal-noise characteristics and periodic flow structure around NACA0018 airfoil. Experiments in Fluids, 2006, 40(3): 482-490.
[8] Fujisawa N, Shibuya S, Nashimoto A, et al. Aerodynamic noise and flow visualization around two-dimensional airfoil airfoil. Journal of Visualization Society of Japan, 2001, 21(19): 123-129.
[9] Kim H J, Lee S, Fujisawa N. Computation of unsteady flow and aerodynamic noise of NACA0018 airfoil using large-eddy simulation. International Journal of Heat and Fluid Flow, 2006, 27(2): 229-242.
[10] Sasaki S, Takamatsu H, Tsujino M. Influence of separated vortex on aerodynamic noise of an airfoil blade. Journal of Thermal Science, 2010, 19(1): 60-66.
[11] Liu X D, Yang A L, Dai R. Research on vortex noise radiation of compressor cascade under different attack angle. Journal of Chinese Society of Power Engineering, 2011, 31(7): 513-517.(in Chinese) 柳晓丹, 杨爱玲, 戴韧. 不同攻角下压气机叶栅涡流噪声辐射特性的研究. 动力工程学报, 2011, 31(7): 513-517.
[12] Smagorinsky J. General circulation experiments with the primitive equations. Monthly Weather Review, 1963, 91(3): 99-164.
[13] Lilly D K. A proposed modification of the Germamo subgrid-scale closure method. Physics of Fluids A Fluid Dynamics, 1992, 4(3): 633-635.
[14] Zhang Z S, Cui G X, Xu X Y. Large eddy simulation of turbulent flows: theory and application. Beijing: Tsinghua University Press, 2008: 36-40.(in Chinese) 张兆顺, 崔桂香, 许晓阳. 湍流大涡数值模拟的理论和应用. 北京: 清华大学出版社, 2008: 36-40.
[15] Yang D Q, Zhao Z S. The theory and application of boundary element method. Beijing: Beijing Institute of Technology Press, 2002: 250-254.(in Chinese) 杨德全, 赵忠生. 边界元理论及应用. 北京: 北京理工大学出版社, 2002: 250-254.
[16] Shu S Z, Zhu L, Ke X L. Impeller mechanical principle. Beijing: Tsinghua University Press, 1991: 217-219.(in Chinese) 舒士甄, 朱力, 柯玄龄. 叶轮机械原理. 北京: 清华大学出版社, 1991: 217-219.