流体力学、飞行力学与发动机

基于任意空间属性FFD技术的融合式翼稍小翼稳健型气动优化设计

  • 黄江涛 ,
  • 高正红 ,
  • 白俊强 ,
  • 赵轲 ,
  • 李静 ,
  • 许放
展开
  • 1. 西北工业大学 翼型叶栅空气动力学国家重点实验室, 陕西 西安 710072;
    2. 中国空气动力研究与发展中心, 四川 绵阳 621000
黄江涛,男,博士后。主要研究方向:飞行器总体气动设计、计算空气动力学与飞行器气动弹性力学。,E-mail:hjtcyflove@163.com;高正红,女,教授,博士生导师。主要研究方向:飞行力学与飞行控制、飞行器气动外形设计及计算空气动力学。Tel:029-88495971,E-mail:zgao@nwpu.edu.cn

收稿日期: 2012-01-11

  修回日期: 2012-02-28

  网络出版日期: 2013-01-19

Study of Robust Winglet Design Based on Arbitrary Space Shape FFD Technique

  • HUANG Jiangtao ,
  • GAO Zhenghong ,
  • BAI Junqiang ,
  • ZHAO Ke ,
  • LI Jing ,
  • XU Fang
Expand
  • 1. National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Northwestern Polytechnical University, Xi’an 710072, China;
    2. China Aerodynamic Research and Development Center, Mianyang 621000, China

Received date: 2012-01-11

  Revised date: 2012-02-28

  Online published: 2013-01-19

摘要

以非均匀有理B样条基函数为空间控制体属性,建立了任意空间形状自由变形(FFD)技术参数化方法。所建立的气动外形参数化系统通过FFD控制体的分布以及控制顶点的合理选取,能够对任意复杂外形进行参数化设计。首先采用FFD控制体对某型客机翼稍小翼进行空间属性构建;然后结合基于Delaunay图映射技术建立了结构对接网格变形模式,采用分群粒子群算法以及误差反向传播训练算法(BP)神经网络进行稳健型气动优化系统的构建;最后对某型客机融合式翼稍小翼的后掠角、倾斜角和高度等参数进行稳健型气动优化设计,分析对比了优化前后翼梢小翼表面压力云图、截面压力分布及载荷分布。优化设计结果表明:设计后的翼稍小翼的升阻比与阻力发散特性明显提高。

本文引用格式

黄江涛 , 高正红 , 白俊强 , 赵轲 , 李静 , 许放 . 基于任意空间属性FFD技术的融合式翼稍小翼稳健型气动优化设计[J]. 航空学报, 2013 , 34(1) : 37 -45 . DOI: 10.7527/S1000-6893.2013.0005

Abstract

An arbitrary space shape free-form deformation (FFD) technique is first established in this paper based on the non-uniform rational B-splines basis function, and any complex configuration can be parameterized through choosing an FFD shape and lattice reasonably. First an airliner wingtip is parameterized using the FFD technique. Then the multi-block structure grid deformation technique is established by the Delaunay graph mapping method. An aerodynamic optimization design system is established by combining the FFD technique, the grouping particle swarm optimization arithmetic with the back propagation (BP) neural network approximation model. Finally, it processes the robust aerodynamic optimization design of the winglet by taking the swept angle, deflection angle and height of the airliner as design variables. The surface pressure contour, pressure distribution of the wing section and load distribution of the initial and optimized winglet are analyzed. The results show that the optimized winglet has significantly better aerodynamic characteristics.

参考文献

[1] Fang B R. Airplane aerodynamic design. Beijing: Aviation Industry Press, 1997: 1126-1160. (in Chinese) 方宝瑞. 飞机气动布局设计. 北京: 航空工业出版社,1997: 1126-1160.
[2] Zhang Y, Sun G, Zhang M, et al. The optimal design of civil aircraft winglet with multiple constraint. Acta Aerodynamica Sinica, 2006, 24(3): 367-370. (in Chinese) 张雨, 孙刚, 张淼, 等. 民用飞机翼梢小翼多约束优化设计. 空气动力学学报, 2006, 24(3): 367-370.
[3] Kubrynski K. Wing-winglet design methodology for low speed applications. AIAA-2003-215, 2003.
[4] Maughmer M. The design of winglets for high-performance sailplanes. AIAA-2001-2406, 2001.
[5] Wu X S, Shi X J,Wang J P.Data optimization and wind tunnel test of UAV winglets.Flight Dynamics, 2004, 22(1): 30-36.(in Chinese) 吴希拴, 师小娟, 王建培. 无人机翼尖小翼参数化优化及风洞试验研究. 飞行力学, 2004, 22(1): 30-36.
[6] Andreoli M, Janka A, Desideri J A. Free-form-deformation parameterization for multilevel 3D shape optimization in aerodynamics. INRIA Research Report 5019, 2003.
[7] Sederberg T W, Parry S R. Freeform deformation of solid geometric models. Computer Graphics, 1986, 22(4): 151-160.
[8] Zhu X X. Free curve and surface modeling techniques. Beijing: Science Press, 2000: 236-250.(in Chinese) 朱心雄. 自由曲线曲面造型技术. 北京: 科学出版社,2000: 236-250.
[9] Baker T J. Unstructured meshes and surface fidelity for complex shapes. AIAA-1991-1591, 1991.
[10] Liu X Q, Qin N. Fast dynamic grid deformation based on Delaunay graph mapping. Journal of Computational Phy-sics, 2006(211): 405-423.
[11] Leatham M, Stokes S, Shaw J A, et al. Automatic mesh generation for rapid-response Navier-Stokes calculations. AIAA-2000-2247, 2000.
[12] Chew L P, Constrained Delaunay triangulations. Algorithmic, 1989(4): 97-108.
[13] Devroye L, Mucke E, Zhu B. A note on point location of Delaunay triangulation of random points. Algorithmic, 1998, 22(4): 477-482.
[14] Pepper D W, Heinrich J C, The finite element method: basic concepts and applications. Hemisphere Publishing Corporation, 1992.
[15] Wang X. Study on an algorithm for fast constructing Delaunay triangulation an 3D visualization in OpenGL environment. Science Technology and Engineering, 2011, 11(9): 2070-2074. (in Chinese) 王星.快速构建Delaunay三角网算法研究及OpenGL下三维可视化.科学技术与工程, 2000, 11(9): 2070-2074.
[16] Menter F R. Two-equation eddy viscosity turbulence models for engineering applications. AIAA Journal, 1994, 32(8): 269-289.
[17] Kennedy J. The particle swarm: social adaptation of knowledge. IEEE International Conference on Evolutionary Computation, 1997: 303-308.
[18] Li X A, Zhang X G. Neural network and neural computer introduction. Xi’an: Northwestern Polytechnical University Press, 1994. (in Chinese) 李小安, 张晓缋. 神经网络与神经计算机导论. 西安: 西北工业大学出版社, 1994.
[19] Moody J E, Darken C J. Fast learning in networks of locally-tuned processing units. Neural Computation, 1989, 1(2): 281-294.
文章导航

/