针对某前掠翼翼身融合无尾布局由鸭面与尾舵组成的纵向基本控制舵面在大迎角状态操纵效率降低的问题,采用数值模拟方法研究一种机身下表面嵌入式新概念纵向操纵舵面实施大迎角纵向操纵补充的可行性。提出了嵌入式舵面的设计思想,研究了嵌入式舵面高度、偏度及其与尾舵组合时的相对位置等参数影响,提出了嵌入式舵面的设计原则、流动机理以及提供低头力矩增量的作用原理。研究结果表明:嵌入式舵面是无尾布局飞机大迎角纵向操纵的高效补充措施,单独使用,最大可提供约平衡10°迎角的低头操纵力矩,并对升阻特性影响很小;与尾舵组合使用,在研究迎角范围内(迎角α≤32°),可提供约6°迎角的低头平衡力矩增量,且对升阻性能产生有利影响。本文工作可为其他翼身融合无尾布局的气动舵面设计提供借鉴。
Based on the platform of blended wing body tailless configuration, to solve the problem of decreasing pitching control efficiency at high angles of attack for basic longitudinal control surfaces including canard elevator and tail elevator, the new concept of lower surface spoiler is put forward and the effectiveness and auxiliary function for pitching control at high angles of attack is analyzed with numerical simulation method. The influences of the parameters such as lower surface spoiler's height, deflection angle, and relative position when combined with tail elevator are studied. The design law, flow mechanism and action principle to afford nose-down pitching moment increment are put forward. The results show that lower surface spoiler can support tailless configuration as a high-efficiency longitudinal control effecter. With the single use of lower surface spoiler, the maximal nose down pitching moment can be obtained to balance 10? angle of attack with little effect on lift and drag characteristics. When combined with the tail elevator, nose down moment increment of 6? angle of attack can be obtained with the angles of attack smaller than 32? and favorable effect on lift-drag performance is produced. The longitudinal control ability at high angles of attack is improved. The design developed in this paper can provide a reference for control surface design for blended wing body tailless configuration.
[1] Wu L X, Zuo Z, Liu P S, et al. Tailless flying wing aerodynamic configuration being optimal selection in UCAV general layout design. Hongdu Science and Technology, 2003(1): 1-5.(in Chinese) 吴立新, 左重, 刘平生, 等. 无尾飞翼气动布局是UCAV总体设计的最佳选择. 洪都科技, 2003(1): 1-5.
[2] Bowlus J A, Multhopp D, Banda S S. Challenges and opportunities in tailless aircraft stability and control. AIAA-1997-3830, 1997.
[3] Wood R M, Bauer S X S. Advanced aerodynamic control effectors. AIAA-1999-5619, 1999.
[4] Simon J M, Blake W B, Multhopp D. Control concepts for a vertical tailless fighter. AIAA-1993-4000, 1993.
[5] William J, Gillard P E, Kenneth M. Directional control for tailless aircraft using all moving wing tips. AIAA-1997-3487, 1997.
[6] Stenfelt G, Ringertz U. Lateral stability and control of a tailless aircraft configuration. Journal of Aircraft, 2009, 46(6): 2161-2163.
[7] Stenfelt G, Ringertz U. Yaw control of a tailless aircraft configuration. Journal of Aircraft, 2010, 47(5): 1807-1810.
[8] Valiyff A, Arjomandi M. An investigation into the aerodynamic efficiency of tailless aircraft. AIAA-2009-1436, 2009.
[9] Feng L H, Wang J J, Yu D S. Lateral-directional control of tailless aircraft with multiple control surfaces. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(9): 1038-1042.(in Chinese) 冯立好, 王晋军, 于东升. 多操纵面无尾布局飞机横航向控制. 北京航空航天大学学报, 2010, 36(9): 1038-1042.
[10] Zhang Z J, Li J, Li T, et al. Experimental investigation of split-rudder deflection on aerodynamic performance of tailless flying-wing aircraft. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 63-66.(in Chinese) 张子军, 黎军, 李天, 等. 开裂式方向舵对某无尾飞翼布局飞机气动特性影响的实验研究. 实验流体力学, 2010, 24(3): 63-66.
[11] Zuo L X, Wang J J. Experimental study of the effect of AMT on aerodynamic performance of tailless flying wing aircraft. Acta Aerodynamica Sinica, 2010, 28(2): 132-137.(in Chinese) 左林玄, 王晋军. 全动翼尖对无尾飞翼布局飞机气动特性影响的实验研究. 空气动力学学报, 2010, 28(2): 132-137.
[12] Liu G, Qiu Y X, Chen H, et al. Investigation of the direction control for the tailless aircraft configuration. Experiments and Measurements in Fluid Mechanics, 2003, 17(4): 1-9.(in Chinese) 刘刚, 邱玉鑫, 陈洪, 等.无尾飞机布局方向控制特性研究. 流体力学实验与测量, 2003, 17(4): 1-9.
[13] Sun J, Zhang B Q, Yang G J. Concept investigation of W tailless configuration. AIAA-2005-4602, 2005.
[14] Sun J, Zhang B Q, Zhou Z, et al. An innovative W-shaped tailless aerodynamic configuration. Journal of Northwestern Polytechnical University, 2004, 22(3): 265-268.(in Chinese) 孙静, 张彬乾, 周洲, 等. 'W'型无尾气动布局研究. 西北工业大学学报, 2004, 22(3): 265-268.
[15] Sun J, Zhang B Q, Yang G J. Flow mechanism investigation for 'W' tailless aerodynamic configuration. Acta Aerodynamica Sinica, 2006, 24(3): 385-388.(in Chinese) 孙静, 张彬乾, 杨广珺. 'W'型无尾布局流动机理研究. 空气动力学学报, 2006, 24(3): 385-388.
[16] Xiao H, Wang L X. Research on control principles and stability characteristics of W-shaped tailless aircraft. Acta Aeronautica et Astronautica Sinica, 2007, 28(5): 1062-1068.(in Chinese) 肖华, 王立新. W型无尾飞机的操纵机理与稳定特性研究. 航空学报, 2007, 28(5): 1062-1068.
[17] Shen D, Zhang B Q, Chen Y C, et al. Flow control technique for forward-swept wing blended body tailless configuration. Acta Aeronautica et Astronautica Sinica, 2009, 30(3): 397-402.(in Chinese) 沈冬, 张彬乾, 陈迎春, 等. 前掠翼融合体无尾布局流动控制技术. 航空学报, 2009, 30(3): 397-402.
[18] Wang Y Y, Zhang B Q, Shen D. Exploring combined capability of aerodynamic control surfaces of W-shaped tailless configuration. Journal of Northwestern Polytechnical University, 2008, 26(6): 698-702.(in Chinese) 王元元, 张彬乾, 沈冬. W型无尾布局复合式气动舵面设计研究. 西北工业大学学报, 2008, 26(6): 698-702.
[19] Committee of Handbook of Aircraft Design. Handbook of aircraft design (6) aerodynamic design. Beijing: Aviation Industry Press, 2002: 41-46.(in Chinese) 《飞机设计手册》总编委会. 飞机设计手册(6)气动设计. 北京: 航空工业出版社, 2002: 41-46.