为了快速获得不同刚度的叶轮机叶片颤振特性,提出了一种基于系统辨识技术的叶片排非定常气动力建模方法,分析了叶片气动阻尼随叶间相角差和固有频率的变化特性.该方法通过对多叶片通道的某一叶片单独施加一个扫频振动信号,求解一次非定常流场,得到叶片排上每个叶片的气动力响应,通过系统辨识,获得每个叶片的气动力频率响应.根据小扰动流的叠加原理,得到扫频范围内各固有频率下的叶片排所有叶片共同激励的气动力模型,由此进一步得到各个不同固有频率的所有叶间相角差下的气动阻尼.针对STCF4(Standard Test Configuration 4)算例,该方法的计算结果与直接采用计算流体力学(CFD)方法和直接采用谐振信号的降阶方法(ROM)得到的气动阻尼系数吻合得很好.该方法只需进行一次非定常CFD计算就能得到扫频范围内不同固有频率下的气动阻尼特性曲线,极大地提高了计算效率,方便了叶轮机设计初期的气动弹性稳定性参数分析.
This paper presents an efficient and fidelity-oriented unsteady aerodynamic modeling method that can investigate flutter for turbomachinery. A certain blade of multiple blade passages is specified vibrating at a swept-frequency signal instead of harmonic one, and forced aerodynamic responses of the blade row can first be calculated. Identify form the aerodynamic responses data, so that the frequency responses of the system for muti-passages are acquired, and the aerodynamic coefficient of every blade for different natural frequencies within swept-frequencies can be obtained immediately. Following the superposition principle of small disturbance flow, aerodynamic damping coefficients changing with inter blade phase angles as well as frequencies are acquired only by an unsteady computational fluid dynamics(CFD)computation. The aeroelastic characteristics of STCF4 (Standard Test Configuration 4) are analyzed by using this method. The results for different na- tural frequencies are agreed well with that of reduced order model(ROM)method as well as direct CFD method, and the computational efficiency is improved obviously, as a result, this method is useful to analyze stability during preliminary design of turbomachinery.
[1] Zhou S. Introduction of turbomachinery aeroelasticity. Bejing: National Defense Industry Press, 1989: 7-35. (in Chinese) 周盛. 叶轮机气动弹性力学引论. 北京: 国防工业出版社, 1989: 7-35.
[2] Yang X D, Tang Z M, Zhou S. A semiactuator disk method for predicting the blade stall flutter. Journal of Beijing Insititute of Aeronautic and Astronautic, 1986(4): 93-101. (in Chinese) 杨晓东, 唐智明, 周盛. 预测叶片失速颤振的一种半激盘方法. 北京航空学院学报, 1986(4): 93-101.
[3] Yang X D, Tao D P, Zhou S. Discussion of a basic assumptions for turbomachinery aeroelasticity. Science in China: Series A, 1991(2): 192-199. (in Chinese) 杨晓东, 陶德平, 周盛. 对于叶轮机气动弹性力学一个基本假设的讨论. 中国科学: A辑, 1991(2): 192-199.
[4] Lane F. System mode shapes in the flutter of compressor blade rows. Journal of the Aeronautical Sciences, 1956(23): 54-66.
[5] BakhleM A, Reddy T S R, Keith T G K. Time domain flutter analysis of cascades using a full potential solver. AIAA Journal, 1992, 30(1): 163-170.
[6] Yang Q Z, Xiao J, Zhou X H. Cascade flutter investigation based on flow structure coupling unsteady flow. Journal of Propulsion Technology, 2005, 26(6): 526-530. (in Chinese) 杨青真, 肖军, 周新海. 基于气/固耦合非定常流动的叶栅颤振分析. 推进技术, 2005, 26(6):526-530.
[7] Sadeghi M, Yang S, Liu F. Computation of uncoupled and coupled aeroelasticity of three-dimensional blade rows. AIAA-2004-0192, 2004.
[8] Sadeghi M, Liu F. Investigation of non-linear flutter by a coupled aerodynamics and structural dynamics method. AIAA-2001-0573, 2001.
[9] Zhang W W, Ye Z Y. Effect of leading-edge vortex on flutter characteristics of high sweep angle wing. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2263-2268. (in Chinese) 张伟伟, 叶正寅. 大后掠翼前缘涡对其颤振特性的影响研究. 航空学报, 2009, 30(12): 2263-2268.
[10] Zhang W W, Ye Z Y, Yang Q, et al. Gust response ana- lysis using CFD-based reduced order models. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(5): 593-598. (in Chinese) 张伟伟, 叶正寅, 杨青, 等. 基于ROM技术的阵风响应分析方法. 力学学报, 2008, 40(5): 593-598.
[11] Zhang W W, Ye Z Y, Zhang C A. ROM based aeroservoelastic analysis in transonic flow. Journal of Aircraft, 2009, 46(6): 2178-2183.
[12] Zhang W W, Ye Z Y. Control law design for transonic aeroservoelasticity. Aerospace Science and Technology, 2007, 11(2-3): 136-145.
[13] Zhang C A, Zhang W W, Ye Z Y, et al. An efficient method on aerodynamic damping coefficient calculation for turbomachinery. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 826-833. (in Chinese) 张陈安, 张伟伟, 叶正寅, 等. 一种高效的叶轮机叶片气动阻尼计算方法. 力学学报, 2011, 43(5): 826-833.
[14] Mehra R K, Prasanth R K. Time-domain system identification methods for aeromechanical and aircraft structural modeling. Journal of Aircraft, 2004, 41(4): 721-729.
[15] Love R, Lind R. Identification of aeroservoelastic models from experimental flapping-wing deflections. AIAA-2009-5841, 2009.
[16] Salhi B, Lardies J, Berthillier M. Identification of modal parameters and aeroelastic coefficients in bladed disk assemblies. Mechanical Systems and Signal Processing, 2009(23): 1984-1908.
[17] Zhang W W, Ye Z Y. Numerical simulation of aeroelasti- city basing on identification technology of unsteady aerodynamic loads. Acta Aeronautica et Astronautica Sinica, 2006, 27(4): 579-583. (in Chinese) 张伟伟, 叶正寅. 基于非定常气动力辨识技术的气动弹性数值模拟. 航空学报, 2006, 27(4): 579-583.
[18] Stephens C H, Arena S A J, Gupta K K. CFD-based aeroservoelastic predictions with comparisons to benchmark experimental data. AIAA-1999-0766, 1999.
[19] Fang C Z, Xiao D Y. Process identification. Beijing: Tsinghua University Press, 2003: 71-80. (in Chinese) 方崇智, 萧德云. 过程辨识. 北京:清华大学出版社, 2003: 71-80.
[20] Blcs A, Fransson T H. Aeroelasticity in turbomachines-comparison of theoretical and experimental cascade results. ADA180534, 1986.