[1] Zhang B G, Yue J H, Wang S H. Bird-strike: a hard nut for 20th century. Martial Historical Facts, 2004(4): 15-19. (in Chinese) 张北光, 岳建华, 王山河. 鸟撞飞机: 世纪难题. 军事史林, 2004(4): 15-19.
[2] Dolbeer R A, Wright S E, Weller J, et al. Wildlife strike to civil aircraft in the United States 1990-2008. FAA National Wildlife Strike Database Serial Report No.15, Washington: FAA, 2009.
[3] Bird strikes to civil aircraft in China (2009). Center of Aviation Safety Technology, CAAC, 2010. (in Chinese) 2009年中国民航鸟击航空器事件数据分析报告. 中国民用航空总局航空安全技术中心, 2010.
[4] FAR-25 Electronic code of federal regulations. FAA, 2010.
[5] CS-25 Certification specifications for large aeroplanes CS-25. EASA, 2007.
[6] CCAR-25-R3 China civil aviation regulations: 25—airworthiness standard of transport aircraft. CAAC, 2001. (in Chinese) CCAR-25-R3 中国民用航空规章:第25部——运输类飞机适航标准. 中国民用航空总局, 2001.
[7] Wilbeck J S, Reimane W. Impact behaviour of low strength projectiles. AFML-TR-77-134, 1978.
[8] Wilbeck J S, Barber J. Bird impact loading. The Shock and Vibration Bulletin, 1978, 48(2): 115-122.
[9] Yin J, Li Q H. Selection of methods and parameters of calculating nonlinear transient response blade. Transactions of Nanjing University of Aeronautics & Astronautics, 1995, 27(4): 571-576. (in Chinese) 尹晶, 李清红. 叶片非线性瞬态响应计算方法与参数选择. 南京航空航天大学学报, 1995, 27(4): 571-576.
[10] Chen W, Yin J, Song Y D, et al, Numerical analysis of transient response of plates due to oblique impact loads. Transactions of Nanjing University of Aeronautics & Astronautics. 1996, 28(6): 854-857. (in Chinese) 陈伟, 尹晶, 宋迎东, 等. 平板叶片斜撞击瞬态响应的计算分析. 南京航空航天大学学报, 1996, 28(6): 854-857.
[11] Chen W, Song Y D, Yin J, et al. Numerical analysis of blade transient response to bird impact under centrifugal loading. Transactions of Nanjing University of Aeronautics & Astronautics, 1997, 12(2): 122-126. (in Chinese) 陈伟, 宋迎东, 尹晶, 等. 离心载荷作用下平板叶片鸟撞击响应计算. 南京航空航天大学学报, 1997, 12(2): 122-126.
[12] Chen W, Guan Y P, Gao D P. Numerical simulation of the transient response of blade due to bird impact. Acta Aeronautica et Astronautica Sinica, 2003, 24(16): 531-533. (in Chinese) 陈伟, 关玉璞, 高德平. 发动机叶片鸟撞击瞬态响应的数值模拟. 航空学报, 2003, 24(16): 531-533.
[13] Zhu S H, Tong M B, Wang Y Q. Experiment and numerical simulation of a full-scale aircraft windshield subjected to bird impact. AIAA-2009-2575, 2009.
[14] Smojver I, Ivancevic D. Numerical simulation of bird strike damage prediction in airplane flap structure. Composite Structures, 2010, 92(9): 2016-2026.
[15] Goyal V K, Huertas C A, Borrero J R, et al. Robust bird-strike modeling based on ALE formulation using LS-DYNA. AIAA-2006-1759, 2006.
[16] Hanssen A G, Girardet Y, Olovsson L, et al. Numerical model for bird strike of aluminium foam-based sandwich panels. International Journal of Impact Engineering, 2006, 32(7): 1127-1144.
[17] Wang X J, Feng Z Z, Wang F S, et al. Dynamic response analysis of bird strike on aircraft windshield based on damage-modified nonlinear viscoelastic constitutive relation. Chinese Journal of Aeronautics, 2007, 20(6): 511-517.
[18] Audic S, Berthillier M, Bonini J, et al. Prediction of bird impact in hollow fan blades. AIAA-2000-3201, 2000.
[19] Georgiadis S, Gunnion A J, Thomson R S, et al. Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge. Composite Structures, 2008, 86(1-3): 258-268.
[20] Wu L, Guo Y N, Li Y L. Bird strike simulation on sandwich composite structure of aircraft radome. Explosion and Shock Waves, 2009, 29(6): 642-647. (in Chinese) 毋玲, 郭英男, 李玉龙. 蜂窝夹芯雷达罩结构的鸟撞数值分析. 爆炸与冲击, 2009, 29(6): 642-647.
[21] Zhao N, Xue P, Li Y L. Study on dynamic response of honeycomb sandwich panels subjected to bird strike. Acta Armamentarii, 2010, 31(1): 184-189. (in Chinese) 赵楠, 薛璞, 李玉龙. 鸟体撞击蜂窝夹层板的动力响应分析研究. 兵工学报, 2010, 31(1): 184-189.
[22] Goyal V K, Huertas C A, Borrero J R, et al. Robust bird-strike modeling based on SPH formulation using LS-DYNA. AIAA-2006-1878, 2006.
[23] Meguid S, Mao R, Ng T. FE analysis of geometry effects of an artificial bird striking an aeroengine fan blade. International Journal of Impact Engineering 2008, 35(6): 487-498.
[24] Nizampatnam L S, Horn W J. Investigation of equation of state models for predicting bird impact loads. AIAA-2008-682, 2008.
[25] Nizampatnam L S, Horn W J. Investigation of material density variations for predicting bird impact loads. AIAA-2008-2252, 2008.
[26] Zhang Y K, Li Y L. Back analysis of bird material parameter. Aeronautical Computing Technique, 2007, 37(6): 1-4. (in Chinese) 张永康, 李玉龙. 确定鸟体材料参数的反演方法. 航空计算技术, 2007, 37(6): 1-4.
[27] Zhang Y K, Li Y L. The inversion of bird's material parameters using improved BP neural network. Machinery Design & Manufacture, 2010(2): 51-53. (in Chinese) 张永康, 李玉龙. 基于改进BP神经网络的鸟体材料参数反演. 机械设计与制造, 2010(2): 51-53.
[28] Liu J, Li Y L, Guo W G, et al. Parameters inversion on bird constitutive model Part Ⅰ: study on experiment of bird striking on plate. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 802-811. (in Chinese) 刘军, 李玉龙, 郭伟国, 等. 鸟体本构模型参数反演Ⅰ: 鸟撞平板试验研究. 航空学报, 2011, 32(5): 802-811.
[29] Liu J, Li Y L, Shi X P, et al. Parameters inversion on bird constitutive model Part Ⅱ: study on model parameters inversion. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 812-821. (in Chinese) 刘军, 李玉龙, 石霄鹏, 等. 鸟体本构模型参数反演Ⅱ: 模型参数反演研究. 航空学报, 2011, 32(5): 812-821.
[30] Wilbeck J S, Rand J L. The development of substitute bird model. ASME Journal of Engineering for Power, 1981, 103(6): 725-730.
[31] Budgey R. The development of artificial bird designs for bird strike resistence testing. Amsterdam: IBSC25/WP-IE3, 2000: 543-550.
[32] Lavoie M A, Gakwaya A, Ensan M N, et al. Bird's substitute tests results and evaluation of available numerical methods. International Journal of Impact Engineering, 2009, 36(10-11): 1276-1287.
[33] Besse J, Fuertes A. Behavior of aramid epoxy composite structures to bird impact. Copenhagen: Bird Strike Committee Europe (BSCE) 18th Meeting. 1986.
[34] Airoldi A, Tagliapietra D. Bird impact simulation against a hybrid composite and metallic vertical stabilizer. AIAA-2001-1390, 2001.
[35] Reglero J, Rodríguez-Pérez M, Solórzano E, et al. Aluminium foams as a filler for leading edges: improvements in the mechanical behaviour under bird strike impact tests. Materials and Design, 2011, 32(2): 907-910.
[36] Asundi A, Choi A. Fiber metal laminates: an advanced material for future aircraft. Journal of Materials Processing Technology, 1997, 63(1-3): 384-394.
[37] McCarthy M A, Xiao J R, Petrinic N, et al. Modelling of bird strike on an aircraft wing leading edge made from fibre metal laminates—Part 1: material modelling. Applied Composite Materials, 2004, 11(5): 295-315.
[38] McCarthy M A, Xiao J R, Petrinic N, et al. Modelling of bird strike on an aircraft wing leading edge made from fibre metal laminates—Part 2:modelling of impact with SPH bird model. Applied Composite Materials, 2004, 11(5): 317-340.
[39] Chen Y F, Li Y L, Liu J, et al. Study of bird strike on an improved leading edge structure. Acta Aeronautica et Astronautica Sinica, 2010, 31(9): 1781-1787. (in Chinese) 陈园方, 李玉龙, 刘军, 等. 典型前缘结构抗鸟撞性能改进研究. 航空学报, 2010, 31(9): 1781-1787.
[40] Guida M, Marulo F, Meo M, et al. SPH-Lagrangian study of bird impact on leading edge wing. Composite Structures, 2011, 93(3): 1060-1071.
[41] Kermanidis T H, Labeas G, Sunaric M, et al. Development and validation of a novel bird strike resistant composite leading edge structure. Applied Composite Materials, 2005, 12(6): 327-353.
[42] Kermanidis T H, Labeas G, Sunaric M, et al. Bird strike simulation on a novel composite leading edge design. International Journal of Crashworthiness, 2006, 11(3): 189-201.
[43] Zhang Y K, Li Y L. Analysis of the bird impact resistance of different beam-edge structures. Mechanical Science and Technology for Aerospace Engineering, 2007, 26(12): 1595-1599. (in Chinese) 张永康, 李玉龙. 不同构型梁-缘结构抗鸟撞性能分析. 机械科学与技术, 2007, 26(12): 1595-1599.