拉瓦尔喷管的电铸层有一定的均匀性要求.在电铸过程中,电铸阳极的轮廓和位置决定了阴极表面电流密度的分布,并最终影响电铸层的均匀性.为此,设计了一种新的阳极轮廓优化方法,在进行阳极轮廓优化设计时,只需在编制的优化程序中输入阴极轮廓,通过ANSYS软件进行电场分析,程序根据阴极上不同位置电场强度的强弱,自动逐步调整对应点的阳极轮廓,以改善阴极表面的电流密度分布均匀性,即可得到优化后的阳极轮廓.采用该优化方法,可以快速得到所需的阳极轮廓,且通用性强.对某型喷管外壁进行阳极轮廓优化设计后,制得了厚度最大处与最小处比值为1.26的电铸镍层.
关键词:
电铸; 喷管; 阳极; 优化设计; 电场
The deposit of laval nozzle has certain thickness uniformity requirements. During the electroforming, the current density distribution on the cathode surface is decided by the anode profile and its position, which will influence the uniformity of the deposit finally. A new optimization method of the anode profile is designed. During the process of optimization, enter the cathode profile in the optimization program and analyze the electric field by ANSYS. Then according to the real-time current density on the cathode surface, the anode profile is changed progressively by the program to improve the uniformity of the current density distribution. Finally, we can obtain the optimized anode profile. The suitable anode profile can be obtained quickly by this optimization method, which also has strong generality. The anode profile of the nozzle is optimized by the proposed method, and the nickel deposit is obtained, which is 1.26 of the ratio of the maximum thickness to the minimum thickness.
[1] McGeough J A, Leu M C, Rajurkar K P, et al. Electroforming process and application to micro/macro manufacturing.Annals of the CIRP, 2001, 50(2): 499-514.
[2] Hart T, Watson A. Electroforming. Metal Finishing, 2000, 98(1): 388-399.
[3] Wang Y Q, Tang Y P, Zhao W Z, et al. Mold manufacturing method combining electroforming with arc spraying. Journal of Materials Engineering, 2001, (6): 30-32.(in Chinese) 王伊卿, 唐一平, 赵文轸, 等. 电铸与电弧喷涂相结合的模具制造方法. 材料工程, 2001(6): 30-32.
[4] Li X L, Zhu Z W, Zhang Y, et al. Experimental research on electroforming of complex parts with thin wall. Acta Aeronautica et Astronautica Sinica, 2010, 31(10): 2068-2074.(in Chinese) 李学磊, 朱增伟, 章勇, 等. 基于复杂型面薄壁零件成形的电铸试验研究. 航空学报, 2010, 31(10): 2068-2074.
[5] Silaimani S M, John S. Review on recent advances in electroforming during the last decade. Bulletin of Electrochemistry, 2001, 17(12): 553-560.
[6] Tajiri K, Kabeya Z, Saito Y. A new copper electroforming for vacuum components and comparison with conventional processes. Journal of the Vacuum Society of Japan, 2001, 44(9): 831-836.
[7] Chen J W, He S H. Mechanism and technology of electroforming.Beijing: Chemical Industry Press, 2010: 5-9.(in Chinese) 陈钧武, 何士桓. 电铸原理与工艺. 北京: 化学工业出版社, 2010: 5-9.
[8] Elsner F. Thickness distribution for gold and copper electroformed hohlraums. Fusion Technology, 1999, 35: 81-84.
[9] Tang P T. Pulse reversal plating of nickel alloys. Transactions of the Institute of Metal Finishing, 2007, 85 (1): 51-56.
[10] Chou M C, Yang H, Yeh S H. Microcomposite electroforming for LIGA technology. Microsystem Technologies, 2001(7): 36-39.
[11] Oh Y J, Chung S H, Lee M S. Optimization of thickness uniformity in electrodeposition onto a patterned substrate. Materials Transactions, 2004, 45(10): 3005-3010.
[12] Jayakrishnan S, Dhayanand K, Krishnan R M, et al. Metal distribution in electroplating of nickel and chromium. Transactions of the Institute of Metal Finishing, 1998, 76(3): 90-93.
[13] Zhu D, Wang K, Yang J M. Design of electrode profile in electrochemical manufacturing process. Annals of the CIRP, 2003, 52 (1): 169-172.
[14] Yang J M, Kima D H, Zhu D, et al. Improvement of deposition uniformity in alloy electroforming for revolving parts. International Journal of Machine Tools & Manufacture, 2008, 48: 329-337.
[15] Hu G L, Ren J W. An introduction to the finite element analysis and improvement of ANSYS 11.0. Beijing: National Defence Industry Press, 2009: 269-272.(in Chinese) 胡国良, 任继文. ANSYS11.0有限元分析入门与提高. 北京: 国防工业出版社, 2009: 269-272.