电子与自动控制

飞行模拟器操纵负荷系统的无源性设计

展开
  • 1. 哈尔滨工程大学 自动化学院, 黑龙江 哈尔滨 150001;
    2. 哈尔滨工业大学 航天学院, 黑龙江 哈尔滨 150001
刘彦文(1976-) 女,博士,副教授。主要研究方向:采样系统和鲁棒控制系统设计。 Tel: 0451-82519404 E-mail: zhwlyw@163.com
王广雄(1933-) 男,教授,博士生导师。主要研究方向:H控制,控制系统的鲁棒设计。 E-mail: gxwang@hit.edu.cn
李佳(1981-) 男,硕士研究生。主要研究方向:采样系统的鲁棒控制。 E-mail: zhwlyw@sina.com.cn

收稿日期: 2011-03-26

  修回日期: 2011-04-16

  网络出版日期: 2011-12-08

基金资助

国家自然科学基金(61073181);黑龙江省博士后科研启动金(LBH-Q09126);中央高校基本科研业务费专项资金(HEUCF110412)

Passivity Design for the Control Loading System of a Flight Simulator

Expand
  • 1. College of Automation, Harbin Engineering University, Harbin 150001, China;
    2. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

Received date: 2011-03-26

  Revised date: 2011-04-16

  Online published: 2011-12-08

摘要

操纵负荷系统是飞行员与飞行模拟器之间的接口装置。提出了这种人在回路的实时控制系统的一种新的设计思想,这种设计将无源性与阻抗的概念结合,并将系统阻抗的频率特性作为定量设计的手段。基于频率分析,控制器设计中应增加一个阻尼项,使传递到操作员手上的阻抗与飞行环境的阻抗相匹配。并指出,系统中的力伺服系统的阻尼比应在0.5~0.8范围内以满足这个虚拟环境的无源性要求。操纵负荷系统的无源性可保证整个仿真系统的稳定性。所提出的设计思想还可推广应用于其他各种虚拟环境的设计。

本文引用格式

刘彦文, 王广雄, 李佳 . 飞行模拟器操纵负荷系统的无源性设计[J]. 航空学报, 2011 , 32(12) : 2303 -2309 . DOI: CNKI:11-1929/V.20110526.1757.023

Abstract

The control loading system of a flight simulator is an interface between the human operator and the flight simulator. A novel design idea is proposed for such a man-in-loop real time control system. It is pointed out that the design must be based on the combination of passivity with the concept of impedance, and the frequency response of the impedance of the system is used as a quantified design tool in the design. Based on the frequency analysis, an additional damping term is included in the controller design so that the resulting impedance transmitted to the operator's hand is matched closely to the flight environment impedance. It is also pointed out that the damping ratio of the force servo of the control loading system must be in the range of 0.5-0.8 to meet the passivity requirement of the virtual environment. The passivity of the control loading system can ensure the stability of the whole system. The proposed design methodology can also be used to design various virtual environments.

参考文献

[1] 王行仁. 飞行实时仿真系统及技术[M]. 北京: 北京航空航天大学出版社, 1998: 119-134. Wang Xingren. Real-time flight simulation systems and techniques[M]. Beijing: Beihang University Press, 1998: 119-134. (in Chinese)

[2] 石旭东, 张发, 荆涛, 等. 飞行模拟机电动操纵负荷系统控制与仿真[J]. 电机与控制学报, 2010, 14(5): 73-78. Shi Xudong, Zhang Fa, Jing Tao, et al. Control and simulation of electric loading system of flight simulator[J]. Electric Machines and Control, 2010, 14(5): 73-78. (in Chinese)

[3] 卢颖, 王勇亮, 王占林, 等. 基于电动式力伺服的纵向操纵人感仿真系统[J]. 系统仿真学报, 2003, 15(4): 505-507. Lu Ying, Wang Yongliang, Wang Zhanlin, et al. Force-feeling simulation system of longitudinal control based on the electro-motive force servo[J]. Journal of System Simulation, 2003, 15(4): 505-507. (in Chinese)

[4] Park J H, Kim T K, Yoon T S. Systematic control parameter tuning for actuator in control loading system//IEEE International Conference on Industrial Technology. 2006: 1762-1767.

[5] 沈东凯, 华清, 王占林. 基于神经网络的电动加载系统[J]. 航空学报, 2002, 23(6): 525-529. Shen Dongkai, Hua Qing, Wang Zhanlin. Motor-driven load system based on neural networks[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(6): 525-529. (in Chinese)

[6] 付家才, 刘宪华, 马天楚. 飞行模拟器电动式操纵负荷系统控制策略[J]. 黑龙江科技学院学报, 2010, 20(5): 367-370. Fu Jiacai, Liu Xianhua, Ma Tianchu. Control strategies of electric powered control loading system in flight simulator[J]. Journal of Heilongjiang Institute of Science & Technology, 2010, 20(5): 367-370. (in Chinese)

[7] Zhao J S, Shen G, Han J W. Application of adaptive inverse control in control loading system of flight simulator based on rapid prototyping of RT-LAB//3rd International Symposium on Systems and Control in Aeronautics and Astronautics. 2010: 649-653.

[8] Salcudean S E, Hashtrudi-Zaad K, Tafazoli S, et al. Bilateral matched-impedance teleoperation with application to excavator control[J]. IEEE Control Systems, 1999, 19(6): 29-37.

[9] Hashtrudi-Zaad K, Salcudean S E. Transparency in time-delayed systems and the effect of local force feedback for transparent teleoperation[J]. IEEE Transactions on Robotics and Automation, 2002, 18(1): 108-114.

[10] 王裕基, 孙富春, 刘华平, 等. 无环境力反馈的四通道双边控制[J]. 控制理论与应用, 2011, 28(3): 315-320. Wang Yuji, Sun Fuchun, Liu Huaping, et al. Four-channel bilateral control without environmental force feedback[J]. Control Theory & Applications, 2011, 28(3): 315-320. (in Chinese)

[11] Lee K, Lee D Y. Adjusting output-limiter for stable haptic rendering in virtual environments[J]. IEEE Transactions on Control Systems Technology, 2009, 17(4): 768-779.

[12] Colgate J E, Schenkel G. Passivity of a class of sampled-data systems: application to haptic interfaces[J]. Journal of Robotic Systems, 1997, 14(1): 37-47.

[13] 刘彦文, 李佳, 何朕, 等. 遥操作系统力觉接口的无源性设计[J]. 控制理论与应用,2011, 28(7): 994-998. Liu Yanwen, Li Jia, He Zhen, et al. Passivity design of a haptic interface for the remote servo manipulator[J]. Control Theory & Applications, 2011, 28(7): 994-998. (in Chinese)

[14] 刘彦文, 王广雄, 李佳, 等. 力控制系统的设计问题[J]. 电机与控制学报, 2011, 15(4): 98-102. Liu Yanwen, Wang Guangxiong, Li Jia, et al. Design problems of force control systems[J]. Electric Machines and Control, 2011, 15(4): 98-102. (in Chinese)

[15] 暮春棣, 梅生伟, 申铁龙. 非线性系统鲁棒控制理论的一些新进展[J]. 控制理论与应用, 2001, 18(1): 1-6. Mu Chundi, Mei Shengwei, Shen Tielong. New developments in robust nonlinear control theory[J]. Control Theory & Applications, 2001, 18(1): 1-6. (in Chinese)

[16] Kokotovic' P V, Arcak M. Constructive nonlinear control: a historical perspective[J]. Automatica, 2001, 37(5): 637-662.

[17] Stein G. Respect the unstable[J]. IEEE Transactions on Control Systems, 2003, 23(4): 12-25.
文章导航

/