电子与自动控制

带有自适应参数近似的块控反步飞行控制器设计

展开
  • 1. 第二炮兵工程大学 自动控制工程系,陕西 西安 710025;
    2. 上海交通大学 电子信息与电气工程学院,上海 200240;
    3. 中国人民解放军 96669部队,北京 102208
曹立佳(1982-) 男,博士研究生。主要研究方向:飞行器控制、仿真与决策。 Tel: 029-84741963 E-mail: caolijia82@gmail.com
张胜修(1963-) 男,博士,教授,博士生导师。主要研究方向:组合导航与飞行器制导控制。 Tel: 029-84741963 E-mail: zsx1963@yahoo.com.cn
刘毅男(1983-) 男,博士研究生。主要研究方向:飞行器控制、仿真与决策。 Tel: 029-84741963 E-mail: spacemanren@qq.com
刘英(1979-) 女,博士研究生,工程师。主要研究方向:动基座初始对准与组合导航。 Tel: 021-34204432 E-mail: hengxinliu@gmail.com
张盈(1984-) 女,硕士,助理工程师。主要研究方向:计算理论与软件。 Tel: 010-66347661 E-mail:dxn1109@sina.com

收稿日期: 2011-04-19

  修回日期: 2011-05-09

  网络出版日期: 2011-12-08

基金资助

国家自然科学基金 (60874093)

Flight Controller Design Using Adaptive Parameter Approximation Block Backstepping

Expand
  • 1. Department of Automatic Control Engineering, The Second Artillery Engineering University, Xi'an 710025, China;
    2. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    3. No.96669 Unit, People's Liberation Army, Beijing 102208, China

Received date: 2011-04-19

  Revised date: 2011-05-09

  Online published: 2011-12-08

摘要

针对有翼导弹含有未知气动参数时的飞行控制问题,设计了一种带有自适应参数近似的块控反步飞行控制器。分析了块控反步控制器设计的假设条件,并放宽了对指令信号和输入矩阵的部分限制。将导弹动态模型中的未知气动参数转换为待估计参数矩阵,采用自适应参数近似律对未知参数矩阵进行估计,相比使用神经网络逼近未知函数更为简单,易于实现。将滤波器引入控制器设计中,既避免了反复求导虚拟控制律产生的"项数膨胀"问题,又降低了控制器对指令信号的要求。对控制系统跟踪误差动态和Lyapunov稳定性的分析表明系统是稳定且指数收敛的。在某型有翼导弹模型上进行了6自由度(DOF)飞行仿真对比,结果显示所设计的控制器具有良好的指令跟踪能力和较强的鲁棒性。

本文引用格式

曹立佳, 张胜修, 刘毅男, 刘英, 张盈 . 带有自适应参数近似的块控反步飞行控制器设计[J]. 航空学报, 2011 , 32(12) : 2259 -2267 . DOI: CNKI:11-1929/V.20111018.1013.001

Abstract

A flight controller using adaptive parameter approximation block backstepping is designed for a winged missile with unknown aerodynamic parameters. The assumptions for the controller design are analyzed. Moreover, some less stringent assumptions about commands and input matrixes are given. The unknown parameter matrixes, which are formed from the unknown aerodynamic parameters in the missile dynamic model, are estimated by an adaptive parameter approximation method. This method is less complex and easier to implement than neural network approximation. The filters are introduced into the process of controller design, which are used to overcome the "term explosion" problem caused by differentiations of the virtual control law and to reduce the restrictions of commands. The closed-loop system is proved to be stable and converge exponentially through the analysis of tracking errors dynamic and Lyapunov stability. Furthermore,a nonlinear six degree-of-freedom (DOF) flight is simulated on the winged missile model, and the results demonstrate good tracking performance and robustness of the designed flight controller.

参考文献

[1] Lane S H, Stengel R F. Flight control design using non-linear inverse dynamics[J]. Automatica, 1988, 24(4): 471-483.

[2] Kristic M, Kanellakopoulos I, Kokotovic P. Nonlinear and adaptive control design[M]. New York: John Wiley & Sons, 1995.

[3] Schumacher C, Khargonekar P P. Missile autopilot designs using H control with gain scheduling and dynamic inversion[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(2): 234-243.

[4] 陈海兵, 张曙光, 方振平. 加速度反馈的隐式动态逆鲁棒非线性控制律设计[J]. 航空学报, 2009, 30(4): 597-603. Chen Haibin, Zhang Shuguang, Fang Zhenping. Implicit NDI robust nonlinear control design with acceleration feedback[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4): 597-603. (in Chinese)

[5] Kawaguchi J, Miyazawa Y, Ninomiya T. Stochastic evaluation and optimization of the hierarchy-structured dynamic inversion flight control. AIAA-2009-6175, 2009.

[6] Thunberg J, Robinson J W C. Block backstepping, NDI and related cascade designs for efficient development of nonlinear flight control laws. AIAA-2008-6960, 2008.

[7] Robinson J W C, Nilsson U. Design of a nonlinear autopilot for velocity and attitude control using block backstepping. AIAA-2005-6266, 2005.

[8] Sharma M, Richards N D. Adaptive integrated guidance and control for missile interceptors. AIAA-2004-4880, 2004.

[9] Harkegard O, Glad T. Vector backstepping design for flight control. AIAA-2007-6421, 2007.

[10] Farrell J, Polycarpou M, Sharma M. Adaptive backstepping with magnitude, rate, and bandwidth constraints: aircraft longitude control. ADA442139, 2006.

[11] Sonneveldt L, Chu Q P, Mulder J A. Constrained adaptive backstepping flight control: application to a nonlinear F-16/MATV model. AIAA-2006-6413, 2006.

[12] van Oort E R, Sonneveldt L, Chu Q P, et al. Full-envelope modular adaptive control of a fighter aircraft using orthogonal least squares[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(5): 1461-1472.

[13] Ren W, Atkins E. Nonlinear trajectory tracking for fixed wing UAVs via backstepping and parameter adaptation. AIAA-2005-6196, 2005.

[14] Lee T, Kim Y. Nonlinear adaptive flight control using backstepping and neural networks controller[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(4): 675-682.

[15] Niu Y, Lam J, Wang X, et al. Adaptive H control using backstepping design and neural networks[J]. Journal of Dynamic Systems, Measurement, and Control, 2005, 127(3): 478-485.

[16] Li C Y, Jing W X, Gao C S. Adaptive backstepping-based flight control system using integral filters[J]. Aerospace Science and Technology, 2009, 13(2-3): 105-113.

[17] 朱铁夫, 李明, 邓建华. 基于Backstepping控制理论的非线性飞控系统和超机动研究[J]. 航空学报, 2005, 26(4): 430-433. Zhu Tiefu, Li Ming, Deng Jianhua. Nonlinear flight control system based on backstepping theory and supermaneuver[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(4): 430-433. (in Chinese)

[18] Farrell J A, Polycarpou M, Sharma M, et al. Command filtered backstepping[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1391-1395.

[19] Waroop S, Hedrick J K, Yip P P, et al. Dynamic surface control for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2000, 45(10): 1893-1899.

[20] 周丽, 姜长生. 改进的非线性鲁棒自适应动态面控制[J]. 控制与决策, 2008, 23(8): 938-943. Zhou Li, Jiang Changsheng. Improved robust and adaptive dynamic surface control for nonlinear systems[J]. Control and Decision, 2008, 23(8): 938-943. (in Chinese)

[21] Stevens B L, Lewis F L. Aircraft control and simulation[M]. 2nd ed. New York: John Wiley & Sons, 2003.
文章导航

/