固体力学与飞行器总体设计

一种分段线性边界条件连续体振动响应求解方法

展开
  • 哈尔滨工业大学 航天学院, 黑龙江 哈尔滨 150001
卫洪涛(1982-) 男,博士研究生。主要研究方向:航天器结构动力学。 Tel: 0451-86401066 E-mail: htwei@163.com
孔宪仁(1961-) 男,教授,博士生导师。主要研究方向:卫星结构动力学及热力学控制。 Tel: 0451-86413300 E-mail: kongxr@hit.edu.cn

收稿日期: 2011-04-20

  修回日期: 2011-06-15

  网络出版日期: 2011-12-08

基金资助

"微小型航天器系统技术"长江学者创新团队发展计划(IRT0520)

An Approach for Vibration Analysis of Continuous Systems with Piecewise-linear Boundary Conditions

Expand
  • School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

Received date: 2011-04-20

  Revised date: 2011-06-15

  Online published: 2011-12-08

摘要

基于振型转换的思想,提出了一种求解分段线性边界条件,以及可将其他非线性边界条件转化为分段线性边界条件的连续体振动问题的方法——相对振型转换法(Relative Mode Transfer Method, RMTM),用该法研究了端点带双阻挡悬臂梁的非线性振动。利用相对振型转换法处理了梁的接触振型与非接触振型的振动转换,与Moon于1983年所提方法进行了相互印证,通过时程图与幅频响应图,将两种方法得到的梁端点响应的结果进行对比,证实了相对振型转换法的正确性;并研究了一类边界条件梁的非线性振动,通过梁端点的幅值响应的分岔图,讨论了振型之间的耦合、模态阻尼及端点弹簧刚度对梁端点响应的影响。结果表明,弹簧刚度、阻尼、激励力等不同的参数组合可以导致梁的单周期运动、多周期运动以及混沌运动,得到了上述复杂非线性响应在激励力频域上存在的区域。

本文引用格式

卫洪涛, 孔宪仁, 王本利, 张相盟 . 一种分段线性边界条件连续体振动响应求解方法[J]. 航空学报, 2011 , 32(12) : 2236 -2243 . DOI: CNKI:11-1929/V.20110831.1320.003

Abstract

A new approach named the relative mode transfer method (RMTM) is developed in this study to solve the vibration problem of continuous systems with piecewise-linear boundary conditions or other nonlinear boundary conditions which can be transformed into piecewise-linear boundary conditions based on the mode transfer principle. The nonlinear vibration of a cantilever with double stops on the tip is investigated. The transfer between the contact states and non-contact states is dealt with using the new method, and its validity is proved by contrasting the results of a case studied both by the new approach and Moon's method which was proposed in 1983. The problem represented by the case is studied through the bifurcation response of the cantilever tip, and a discussion of the effects of the coupling between modes, modal damping, and stop stiffness. It is found that different combinations of the parameters of stop stiffness, damping ratio, driving force, etc., can lead to period-one, period-n and chaotic vibration, and the area of complex nonlinear response in the range of the driving force is obtained.
文章导航

/