电子与自动控制

基于协同进化粒子群和Pareto最优解的卫星编队队形重构方法

展开
  • 1. 哈尔滨工业大学 航天学院, 黑龙江 哈尔滨 150001;
    2. 哈尔滨工业大学(威海) 信息与电气工程学院, 山东 威海 264200
黄海滨(1983- ) 男,博士研究生。主要研究方向:卫星编队飞行、轨迹规划。 Tel: 0451-86413411-8606 E-mail: hhb833@gmail.com马广富(1963- ) 男,博士,教授,博士生导师。主要研究方向:航天器姿态控制、最优控制。 Tel: 0451-86413411-8606 E-mail: magf@hit.edu.cn

收稿日期: 2011-01-26

  修回日期: 2011-05-04

  网络出版日期: 2011-11-24

基金资助

国家自然科学基金 (61004072);高等学校博士学科点专项科研基金(20102302110031);中央高校基本科研业务费专项资金(HIT.KLOF.2010016)

Satellite Formation Reconfiguration Using Co-evolutionary Particle Swarm Optimization and Pareto Optimal Solution

Expand
  • 1. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China;
    2. School of Information and Electrical Engineering, Harbin Institute of Technology at Weihai, Weihai 264200, China

Received date: 2011-01-26

  Revised date: 2011-05-04

  Online published: 2011-11-24

摘要

针对卫星编队自主队形重构问题,提出了基于协同进化粒子群优化(CPSO)和Pareto最优解的求解方法。首先,使用Legendre伪谱法(LPM)将队形重构问题离散化为非线性规划(NLP)问题;其次,根据卫星编队的特点及碰撞规避的需要,使用CPSO算法对重构问题采用既独立又集中的求解方式,避免了传统优化方法对梯度的求解;然后,使用一种深度-广度优先搜索(D-BFS)算法,能够高效地找到CPSO进化中所有Pareto最优解,提升了算法的效率。仿真结果表明,该方法快速有效,能够满足实时性的要求,使得卫星编队的自主运行成为可能。

本文引用格式

黄海滨, 马广富, 庄宇飞, 吕跃勇 . 基于协同进化粒子群和Pareto最优解的卫星编队队形重构方法[J]. 航空学报, 2011 , 32(11) : 2073 -2082 . DOI: CNKI:11-1929/V.20110707.1107.005

Abstract

This paper proposes an optimal trajectory planning method for satellite formation reconfiguration using co-evolutionary particle swarm optimization (CPSO) and Pareto optimal solution. First, the Legendre pseudospectral method (LPM) is employed to transform the reconfiguration problem into a parameter optimization nonlinear programming (NLP) problem. Next, according to the features of satellite formation and the constraints of collision avoidance, a CPSO algorithm is used to solve the reconfiguration problem separately in a centralized way to avoid the computational complexity of calculating the gradient information with traditional optimization methods. Then, a depth-breadth first search (D-BFS) algorithm is used to search all the Pareto optimal solutions needed by the CPSO, with which the entire redundant search could be avoided. Simulations show that the method could solve the reconfiguration problem in real time, and guarantee collision avoidance during the entire reconfiguration process even when the number of collocation points or number of satellites increases.

参考文献

[1] Acikmese A B, Schar D P, Murray E A, et al. A convex guidance algorithm for formation reconfiguration//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, USA: AIAA, 2006: 1-17.

[2] Scharf D P, Hadaegh F Y, Ploen S R. A survey of spacecraft formation flying guidance and control (Part I): guidance//Proceedings of the American Control Conference. Denver, USA: American Automatic Control Council, 2003: 1733-1739.

[3] Singh G, Hadaegh F Y. Collision avoidance guidance for formation-flying applications//AIAA Guidance Navigation, and Control Conference and Exhibition. Reston, USA: AIAA, 2001: 1-11.

[4] Sultan C, Seereram S, Mehra R K. Deep space formation flying spacecraft path planning[J]. The International Journal of Robotics Research, 2007, 26(4): 405-430.

[5] Richards A, Schouwenaars T, How J P, et al. Spacecraft trajectory planning with avoidance constraints using mixed-integer linear programming[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(4): 755-764.

[6] Cetin B, Bikdash M, Hadaegh F Y. Hybrid mixed-logical linear programming algorithm for collision-free optimal path planning[J]. IET Control Theory & Applications, 2007, 1(2): 522-531.

[7] 黄海滨, 马广富, 庄宇飞. 编队卫星队形重构防碰撞最优轨迹规划[J]. 航空学报, 2010, 31(9): 1818-1823. Huang Haibin, Ma Guangfu, Zhuang Yufei. Optimal trajectory planning for reconfiguration of satellite formation with collision avoidance[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9): 1818-1823. (in Chinese)

[8] Garcia I, How J P. Trajectory optimization for satellite reconfiguration maneuvers with position and attitude constraints//Proceedings of the American Control Conference. Portland, USA: American Automatic Control Council, 2005, 2: 889-894.

[9] Aoude G S, How J P, Garcia I M. Two-stage path planning approach for designing multiple spacecraft reconfiguration maneuvers//Proceedings of the 20th International Symposium on Space Flight Dynamics. Piscataway, USA: IEEE, 2007.

[10] Wu B, Wang D, Poh E K, et al. Nonlinear optimization of low-thrust trajectory for satellite formation: Legendre pseudospectral approach[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1371-1381.

[11] Huntington G T, Rao A V. Optimal reconfiguration of spacecraft formations using the Gauss pseudospectral method[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3): 689-698.

[12] Zanon J, Campbell M E. Optimal planner for spacecraft formations in elliptical orbits[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(1): 161-171.

[13] Scharf D P, Hadaegh F Y, Kang B H. On the validity of the double integrator approximation in deep space formation flying//Proceedings of the International Symposium Formation Flying Missions & Technologies. Pisca- taway, USA: IEEE, 2002.

[14] Rahman A, Mesbahi M, Hadaegh F Y. Optimal balanced- energy formation flying maneuvers[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1395-1403.

[15] Lawson P R, Lay O P, Johnston K J, et al. Terrestrial planet finder interferometer science working group report. California, USA: NASA, 2007.

[16] Gong Q, Fahroo F, Ross I M. Spectral algorithm for pseudospectral methods in optimal control[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3): 460-471.

[17] Ma G F, Huang H B, Zhuang Y F. Deep space formation reconfiguration using pseudospectral method//Proceedings of the 3rd International Symposium on Systems and Control in Aeronautics and Astronautics. Harbin, China: IEEE, 2010: 498-501.

[18] Kennedy J, Eberhart R C, Particle swarm optimization//Proceedings of the IEEE International Conference on Neural Networks. Piscataway, USA: IEEE, 1995: 1942-1948.
文章导航

/