流体力学与飞行力学

压气机/风扇二维叶型自动优化设计

展开
  • 南京航空航天大学 能源与动力学院, 江苏 南京 210016
周正贵(1962- ) 男,教授,博士生导师。主要研究方向:叶轮机叶片气动优化设计、叶轮机气体动力学理论。 Tel: 025-84892200-2319 E-mail: zzgon@nuaa.edu.cn邱名(1984- ) 男,博士研究生。主要研究方向:叶轮机叶片气动优化设计。 Tel: 025-84892200-2401 E-mail: qiu_ming_abc@163.com徐夏(1984- ) 女,硕士研究生。主要研究方向:叶轮机叶片气动优化设计。 Tel: 025-84892200-2401 E-mail: xuxia0718@163.com

收稿日期: 2011-02-24

  修回日期: 2011-04-13

  网络出版日期: 2011-11-24

Automatic Optimization Design of Compressor/Fan 2D Blade Profiles

Expand
  • College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2011-02-24

  Revised date: 2011-04-13

  Online published: 2011-11-24

摘要

通过压气机叶片自动优化设计关键技术研究,提出采用并行遗传算法以实现全局寻优和并行优化缩短优化耗时;采用基于修改量参数化方法,达到优化过程生成叶型的可控性和合理性;提出兼顾非设计点性能的目标函数设置方法,实现全工况优化;并进一步研制出二维平面和任意回转面叶型自动优化设计软件。软件中流场计算模块与商用软件相比一致性较好,表明流场计算模块的可靠性。应用所研制的优化设计软件设计的高亚声叶栅叶片表面等熵马赫数分布呈控制扩散规律,超声叶栅通道内势流区流动近于呈等熵压缩,实现了给定压比下低总压损失系数和较大的低总压损失系数工作范围。

本文引用格式

周正贵, 邱名, 徐夏, 苗雨露 . 压气机/风扇二维叶型自动优化设计[J]. 航空学报, 2011 , 32(11) : 1987 -1997 . DOI: CNKI:11-1929/V.20110526.1754.018

Abstract

In this paper, the key techniques of automatic compressor blade optimization are investigated. A parallel genetic algorithm is adopted as the numerical optimization method for its global and parallel optimization ability. The blade profile parameterization is based on geometry modification to generate controllable and reasonable blade profiles in the process of optimization. To realize the optimization in the whole work range, an objective function is set which also taken into consideration the performance at non-design positions. A software is developed, which could design 2D blade profiles of plane and arbitrary rotating surfaces. The software is used to design high subsonic and supersonic blade profiles of plane and arbitrary rotating surfaces. The constant entropy Mach number distribution of the designed subsonic blade profiles is in good accord with controlled diffusion regularity; the flows are compressed nearly in constant entropy in the potential regions of designed supersonic cascades. Therefore, the designed blade profiles are of low total pressure loss coefficient and large low total pressure loss coefficient range.

参考文献

[1] 周正贵. 压气机/风扇叶片自动优化设计的研究现状和关键技术[J]. 航空学报, 2008, 29(2):257-266. Zhou Zhenggui. Current situations and key techniques of automatic aerodynamic design of compressor/fan blades[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2): 257-266. (in Chinese)

[2] 程荣辉. 轴流压气机设计技术的发展[J]. 燃气涡轮试验与研究, 2004, 17(2): 1-8. Cheng Ronghui. Development of design technology for axial compressor[J]. Gas Turbine Experiment and Re-search, 2004, 17(2): 1-8. (in Chinese)

[3] Pitigala D B A, Zangeneh M, Li Y. Redesign of a tran-sonic compressor rotor by means of a three-dimensional inverse design method: a parametric study. GT2007-27486, 2007.

[4] Ashihara K, Goto A. Turbomachinery blade design using 3-D inverse method, CFD and optimization algorithm. GT2001-358, 2001.

[5] Frank S, Beat R, Casey M, et al. Design of industrial axial compressor blade sections for optimal range and performance[J]. Journal of Turbomachinery, 2004, 126(2): 323-331.

[6] Benini E, Toffolo A. Development of high performance airfoils for axial flow compressors using evolutionary computation[J]. Journal of Propulsion and Power, 2002, 18(3): 544-554.

[7] 周正贵. 高亚音速压气机叶片优化设计[J]. 推进技术, 2004, 25(1): 58-61. Zhou Zhenggui. Optimization of high subsonic axial compressor blades[J]. Journal of Propulsion Technology, 2004, 25(1): 58-61. (in Chinese)

[8] Koller U, Monig R, Kusters B, et al. Development of advanced compressor airfoils for heavy-duty gas turbines—Part I: design and optimization [J]. Journal of Turbomachinery, 2000, 122(3): 397-405.

[9] Kusters B, Schreiber H A, Koller U, et al. Development of advanced compressor airfoils for heavy-duty gas tur-bines—Part II: experimental and theoretical analysis[J]. Journal of Turbomachinery, 2000, 122(3): 406-415.

[10] 汪光文. 基于并行遗传算法的风扇/压气机叶片气动优化. 南京:南京航空航天大学, 2009. Wang Guangwen. Research on aerodynamic optimization design of fan/compressor blade using parallel genetic algorithm. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese)

[11] Oyama A,Liou M S. High-fidelity swept and leaned rotor blade design optimization using evolutionary algorithm. AIAA-2003-4091, 2003.

[12] Arnone A, Liou M S, Povinelli A. Multi-grid calculation of three-dimensional viscous cascade flows[J]. Journal of Propulsion and Power, 1993, 9(4): 605-614.

[13] Baldwin B S, Lomax H. Thin-layer approximation and algebraic model for separation turbulent flows. AIAA-1978-257, 1978.

[14] 徐夏. 叶轮机械流场计算与任意回转面叶型设计. 南京:南京航空航天大学,2010. Xu Xia. Calculation of turbomachinery flow fields and design of blade profile on arbitrarily rotational surfaces. Nanjing:Nanjing University of Aeronautics and Astronau- tics, 2010. (in Chinese)

[15] Obayashi S,Nakamura T. Multiobjective genetic algo-rithm applied to aerodynamic desogn of cascade airfoils[J]. Transactions on Industrial Electronics, 2000, 47(1): 211-216.
文章导航

/