流体力学与飞行力学

超声速客机低音爆布局反设计技术研究

展开
  • 西北工业大学 航空学院,陕西 西安 710072
冯晓强(1986- ) 男,博士研究生。主要研究方向:飞行器总体设计。 E-mail: fxqnpu@163.com 李占科(1973- ) 男,博士,副教授。主要研究方向:飞行器总体设计。 Tel: 029-88495706 E-mail: lzk@nwpu.edu.cn 宋笔锋(1963- ) 男,教授,博士生导师。主要研究方向:飞行器总体设计、飞行器可靠性工程、飞行器适航技术。 Tel: 029-88495914 E-mail: bfsong@nwpu.edu.cn

收稿日期: 2011-01-13

  修回日期: 2011-02-21

  网络出版日期: 2011-11-24

A Research on Inverse Design Method of a Lower Sonic Boom Supersonic Aircraft Configuration

Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2011-01-13

  Revised date: 2011-02-21

  Online published: 2011-11-24

摘要

音爆已经成为限制民用飞机在陆地上空进行超声速飞行最关键的因素。降低超声速客机的音爆水平,使其能够在陆地上空超声速飞行,将会给超声速客机带来巨大的潜在市场。基于SGD(Seebass-George-Darden)方法,构建了相关的设计分析环境,对超声速客机低音爆布局的反设计技术作了研究分析,在此基础上首次提出了一种"梭式"布局静音超声速客机方案。计算分析表明,"梭式"布局较好地兼顾了低音爆的设计要求和气动的设计要求,升力面沿机身纵向均衡配置以及双S形前机身都有利于降低音爆,为新一代低音爆超声速客机的设计提供了有益的参考。

本文引用格式

冯晓强, 李占科, 宋笔锋 . 超声速客机低音爆布局反设计技术研究[J]. 航空学报, 2011 , 32(11) : 1980 -1986 . DOI: CNKI:11-1929/V.20110402.1752.004

Abstract

Sonic boom has become the most critical technology limiting civil aircraft's supersonic flight over land. To realize sonic boom reduction for supersonic aircraft, thus making supersonic flight over land available, will bring a huge potential market. Based on the SGD (Seebass-George-Darden) method, a procedure involving inverse design has been set up, which allows for complete analysis of lower sonic boom and aerodynamic performance. A "shuttle" configuration is developed for the first time. The results reveal that the proposed "shuttle" configuration achieves a better balance between the design demands of lower sonic boom and aerodynamic performance. Both balanced deployment of lifting surface along the longitudinal direction of the fuselage and double S-shaped design of the front body can contribute to the sonic boom reduction, providing a useful reference for designing next-generation high-speed civil transport with low sonic boom.

参考文献

[1] National Research Council. High speed research aeronautics and space engineering board U.S. supersonic commercial aircraft: assessing NASA's high speed research program[M]. Washington, D.C.: National Academy Press, 1997.

[2] 冯晓强, 李占科, 宋笔锋. 超音速客机音爆问题初步研究[J]. 飞行力学, 2010, 28(6): 21-27. Feng Xiaoqiang, Li Zhanke, Song Bifeng. Preliminary analysis on the sonic boom of supersonic aircraft[J]. Flight Dynamics, 2010, 28(6): 21-27. (in Chinese)

[3] Seebass A R. Sonic boom theory[J]. Journal of Aircraft, 1969, 6(13): 177-184.

[4] Seebass A R, Argrow B M. Sonic boom minimization revisited. AIAA-1998-2956, 1998.

[5] Haas A, Kroo I. A multi-shock inverse design method for low-boom supersonic aircraft. AIAA-2010-843, 2010.

[6] Wlezien R, Veitch L. The DARPA quiet supersonic platform program. AIAA-2002-0143, 2002.

[7] Pawlowski J W, Graham D H. Origins and overview of the shaped sonic boom demonstration program. AIAA-2005-0005, 2005.

[8] Howe D C. Improved sonic boom minimization with extendable nose spike. AIAA-2005-1014, 2005.

[9] Freund D, Simmons F. Quiet spike(tm) prototype flight test results. AIAA-2007-1778, 2007.

[10] Miles R B, Martinelli L, Macheret S O. Suppression of sonic boom by dynamic off-body energy addition and shape optimization. AIAA-2002-0150, 2002.

[11] 杨训仁, 陈宇. 大气声学[M]. 北京: 科学出版社, 2007: 256-260. Yang Yunren, Chen Yu. Atmospheric acoustics[M]. Beijing: Science Press, 2007: 256-260. (in Chinese)

[12] Seebass R, George A. Sonic boom minimization[J]. The Journal of the Acoustical Society of America, 1972, 51(2): 686-694.

[13] Darden C. Sonic boom minimization with nose-bluntness relaxation. NASA-TP-1348, 1979.

[14] Plotkin K J, Rallabhandi S K. Generalized formulation and extension of sonic boom minimization theory for front and aft shaping. AIAA-2009-1052, 2009.

[15] Kenneth J P. A rapid method for the computation of sonic booms. AIAA-1993-4433, 1993.

[16] 方宝瑞. 飞机气动布局设计[M]. 北京: 航空工业出版社, 1997. Fang Baorui. Aerodynamic configuration design of aircraft [M]. Beijing: Aviation Industry Press, 1997. (in Chinese)
文章导航

/