流体力学与飞行力学

一种非对称折叠扑翼的风洞试验与数值模拟

展开
  • 1. 西北工业大学 翼型叶栅空气动力学国家重点实验室, 陕西 西安 710072;
    2. 四川航天技术研究院 总体设计部 总体室, 四川 成都 610100
张云飞(1986- ) 男,博士研究生。主要研究方向:计算流体力学、鸟类飞行机理和微型扑翼飞行器设计。 E-mail: shanzhongke.zyf@163.com 叶正寅(1965- ) 男,博士,教授, 博士生导师。主要研究方向:气动弹性、计算流体力学和流固耦合力学。 Tel: 029-88491374 E-mail: yezy@nwpu.edu.cn 谢飞(1977- ) 男,博士, 工程师。主要研究方向:流动仿真算法、气动布局设计和气动弹性分析。 Tel: 028-84803317 E-mail: aeroaero@126.com

收稿日期: 2011-01-13

  修回日期: 2011-04-10

  网络出版日期: 2011-11-24

基金资助

总装预研基金

A Wind Tunnel Test and Numerical Simulation on a Flapping Wing with a Passive Non-symmetrical Wing Flexure

Expand
  • 1. National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Northwestern Polytechnical University, Xi'an 710072, China;
    2. The General Design Office, the General Design Department, Sichuan Academy of Aerospace Technology, Chengdu 610100, China

Received date: 2011-01-13

  Revised date: 2011-04-10

  Online published: 2011-11-24

摘要

为了解鸟类翅膀折叠运动的作用,对一个专利中的折叠扑翼机构进行了数学建模,外翼的折叠运动由非定常过程中的气动力、弹性恢复力矩和惯性力决定。利用风洞试验和数值模拟两种方式对该折叠扑翼模型进行了研究。数值模拟和风洞试验结果表明:相对于非折叠扑翼,折叠翼能够有效提高平均升力;在一定范围内增加内翼扑动频率可以提高折叠翼平均升力系数,但对折叠翼平均阻力系数影响甚微;一个扑动周期内折叠翼能量耗损小于非折叠翼;各力系数曲线揭示了折叠翼与非折叠翼气动特性差别的原因。所以,在扑翼飞行器设计时采用折叠运动是有利的。

本文引用格式

张云飞, 叶正寅, 谢飞 . 一种非对称折叠扑翼的风洞试验与数值模拟[J]. 航空学报, 2011 , 32(11) : 1961 -1970 . DOI: CNKI:11-1929/V.20110526.1752.015

Abstract

Because of the potential use of micro air vehicles, the flapping wing mechanism has generated a great deal of interest. To understand the effect of the flexure of bird wings, a mathematical model of a patented flapping wing with a wing flexure is built and then investigated systematically by a wind tunnel experiment and numerical computation. In the computation the deflection angle of the outer wing is decided by the unsteady aerodynamic forces, the elastic moment and the inertia force. The experiment and computation results indicate that the wing flexure can increase the average lift of the flapping wing. Within a certain range, the larger the flapping frequency of the inner wing is, the greater the average lift coefficient will be. But the average drag coefficient is weakly dependent on the inner wing flapping frequency. The flapping wing with a wing flexure consumes less energy than that without a wing flexure in a flapping cycle. The force curves may account clearly for the differences of aerodynamics between a flapping wing with and without a wing flexure. Therefore it is very important to consider adopting a wing flexure in flapping wing design.

参考文献

[1] Shyy W, Aono H, Chimakurthi S K, et al. Recent progress in flapping wing aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2010, 46(7): 284-327.

[2] Heathcote S, Wang Z, Gursul I. Effect of spanwise flexibility on flapping wing propulsion[J]. Journal of Fluid Structures, 2008, 24(2): 183-199.

[3] Liu P, Bose N. Propulsive performance from oscillating propulsors with spanwise flexibility[J]. Proceedings of the Royal Society A-Mathematical Physical & Engineering Sciences, 1997, 453(1963): 1763-1770.

[4] Zhu Q. Numerical simulation of a flapping foil with chordwise or spanwise flexibility[J]. AIAA Journal, 2007, 45(10): 2448-2457.

[5] Chimakurthi S K, Tang J, Palacios R, et al. Computational aeroelasticity framework for analyzing flapping wing micro air vehicles[J]. AIAA Journal, 2009, 47(8): 1865-1878.

[6] Aono H, Chimakurthi S K, Cesnik C E S, et al. Computational modeling of spanwise flexibility effects on flapping wing aerodynamics. AIAA-2009-1270, 2009.

[7] Viieru D, Tang J, Lian Y S, et al. Flapping and flexible wing aerodynamics of low Reynolds number flight vehicles. AIAA-2006-503, 2006.

[8] Shyy W, Lian Y S, Tang J, et al. Aerodynamics of low Reynolds number flyers[M]. NewYork: Cambridge University Press, 2008: 10-11.

[9] Azuma A. The biokinetics of flying and swimming[M]. 2nd ed. New York: American Institute of Aeronautics and Astronautics, Inc, 2006: 149-156.

[10] 曾锐. 仿鸟微型扑翼飞行器的气动特性研究. 南京: 南京航空航天大学航空宇航学院, 2004. Zeng Rui, Aerodynamic characteristics of flapping-wing MAV simulating bird flight. Nanjing: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 2004. (in Chinese)

[11] Lighthill J. The inaugural goldstein memorial lecture-some challenging new applications for basic mathematical methods in the mechanics of fluids that were originally pursued with aeronautical aims[J]. Aeronautical Journal, 1990, 41(52): 41-52.

[12] Lighthill J. Aerodynamics aspects of animal flight[M]. New York: Plenum Press, 1975: 423-491.

[13] Sato M. Analyses of wing motion observed in the flight of living creatures. Tokyo: University of Tokyo, 1980.

[14] 谢飞. 低马赫数非定常流动数值模拟及应用.西安: 西北工业大学航空学院, 2009. Xie Fei. Numerical simulation and applications of unsteady flow in low Mach. Xi'an: College of Aeronautics, Northwestern Polytechnical University, 2009. (in Chinese)

[15] 杨文青. 基于重叠网格的扑翼飞行器绕流数值模拟研究.西安: 西北工业大学航空学院, 2010. Yang Wenqing. Numerical simulation of flowfield over flapping-wing micro air vehicle based on overset grids. Xi'an: College of Aeronautics, Northwestern Polytechnical University, 2010. (in Chinese)

[16] 王利光, 微型扑翼飞行器动力系统设计与优化.西安: 西北工业大学航空学院, 2008. Wang Liguang, Design and optimization for the propulsion system of the flapping-wing micro air vehicle. Xi'an: College of Aeronautics, Northwestern Polytechnical University, 2008. (in Chinese)

[17] 叶正寅, 武洁, 张伟伟. 一种用于微型飞机的扑翼: 中国, 专利号:ZL200820028169.8. 2008-12-03. Ye Zhengyin, Wu Jie, Zhang Weiwei. A flapping equipment that can be used in micro air vehicle, Patent: ZL200820028169.8. 2008-12-03. (in Chinese)
文章导航

/