流体力学与飞行力学

带旋转修正的弹簧-TFI混合动网格方法

展开
  • 南京航空航天大学 机械结构强度与振动国家重点实验室, 江苏 南京 210016
张兵(1981- ) 男,博士研究生。主要研究方向:飞行器气动弹性力学。 E-mail: zhangbing_end@163.com;韩景龙(1952- ) 男,博士,教授,博士生导师。主要研究方向:飞行器气动弹性力学,复杂结构动力学与控制。 Tel: 025-84896484 E-mail: hjlae@nuaa.edu.cn

收稿日期: 2011-01-04

  修回日期: 2011-02-18

  网络出版日期: 2011-10-27

基金资助

国家自然科学基金 (10872089)

Spring-TFI Hybrid Dynamic Mesh Method with Rotation Correction

Expand
  • State Key Laboratory of Mechanics and Control for Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2011-01-04

  Revised date: 2011-02-18

  Online published: 2011-10-27

摘要

网格存在大变形时,传统的超限插值(TFI)动网格方法易于引起网格正交性问题。依据几何关系并考虑其插值特点,提出了一种带旋转修正的TFI动网格方法。对结构网格块进行分块,在子块角点间建立弹簧元,并基于弹簧类比法计算角点位移;子网格内部结点位移采用修正后的TFI动网格方法进行计算,从而形成具有弹簧-TFI混合特征的动网格新方法。以典型二维及三维黏性网格为例进行方法的有效性研究。结果表明,在显著大变形情况下,引入旋转修正得到了正交性和光顺性良好的变形网格。另外,该方法的计算效率较传统TFI动网格方法有所降低,但相比弹簧方法提高1到2个量级。

本文引用格式

张兵, 韩景龙 . 带旋转修正的弹簧-TFI混合动网格方法[J]. 航空学报, 2011 , 32(10) : 1815 -1823 . DOI: CNKI:11-1929/V.20110419.1703.006

Abstract

Problems of orthogonal properties become more serious when the traditional transfinite interpolation (TFI) dynamic mesh method is employed for large deformations. Based on an analysis of the geometric relationship and interpolation features, an improvement for the present TFI method is proposed with a rotation correction. A new spring-TFI hybrid dynamic mesh method is developed for a structured mesh. First, each block of the computation domain is divided into several sub-blocks. Then, a spring network which connects the corners of all sub-blocks is established to smooth the mesh by means of spring analysis. Finally, a modified TFI method is used for calculating the inner deformations of the sub-blocks. Computational results of typical two and three dimensional viscous grids indicate that good orthogonal and smoothing properties can be achieved by rotation correction for large mesh deformations. In addition, the computational efficiency is slightly decreased than the traditional TFI method, but improved by 1 or 2 orders of magnitude when compared with the spring analogy method.

参考文献

[1] Gordon W N, Hall C A. Construction of curvilinear coordinate systems and application to mesh generation[J]. International Journal for Numerical Methods in Engineering, 1973, 7(4): 461-477.

[2] Thompson J F, Thames F C, Mastin C W. Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies[J]. Journal of Computational Physics, 1974, 15(3): 299-319.

[3] Reuther J J. Aerodynamics shape optimization of complex aircraft configurations via an adjoint formulation. AIAA-1996-20094, 1996.

[4] Byun C, Guruswamy G P. A parallel multi-block moving grid method for aeroelastic applications on full aircraft. AIAA-1998-24782, 1998.

[5] Jones W T, Samareh-Abolhassani J. A grid generation system for multi-disciplinary design optimization. AIAA-1995-1689, 1995.

[6] Tsai H M, Wong A S F, Cai J, et al. Unsteady flow calculations with a parallel multiblock moving mesh algorithm[J]. AIAA Journal, 2001, 39(6): 1021-1029.

[7] Gaitonde A L, Fiddes S P. Three-dimensional moving mesh method for the calculation of unsteady transonic flows[J]. The Aeronautical Journal, 1995, 99(984): 150-160.

[8] Farhat C, Degand C, Koobus B, et al. Torsional springs for two dimensional dynamic unstructured fluid meshes[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 1(63): 231-245.

[9] Blom F J. Considerations on the spring analogy[J]. International Journal of Numerical Methods in Fluids, 2000, 32(6): 647-668.

[10] Degand C, Farhat C. A three-dimensional torsional spring analogy method for unstructured dynamic meshes[J]. Computers and Structures, 2002, 80(3-4): 305-316.

[11] Zeng D H, Ethier C R. A semi-torsional spring analogy model for updating unstructured meshes in 3d moving domains[J]. Finite Elements in Analysis and Design, 2005, 41(11-14): 1118-1139.

[12] Chew L P. Constrained Delaunay triangulations[J]. Algorithmica, 1989, 4(1): 97-108.

[13] Liu X Q, Qin N, Xia H. Fast dynamic grid deformation based on Delaunay graph mapping[J]. Journal of Computational Physics, 2006, 211(2): 405-423.

[14] 刘学强, 李青, 柴建忠, 等. 一种新的动网格方法及其应用[J]. 航空学报, 2008, 29(4): 817-822. Liu Xueqiang, Li Qing, Chai Jianzhong, et al. A new dynamic grid algrithm and its application[J]. Acta Aeronautica et Astronautica Sinca, 2008, 29(4): 817-822. (in Chinese).

[15] Chen P C, Hill L R. A three-dimensional boundary element method for CFD/CSD grid interfacing. AIAA-1999-1213, 1999.

[16] Johnson A A, Tezduyar T E. Simulation of multiple sphere falling in a liquid-filled tube[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 134(4): 351-373.
文章导航

/