在常规轴流级流线曲率法通流设计和任意中弧线叶型造型方法的基础上,引入了适合于大小叶片的当量扩散因子叶型损失模型,发展了用Miller-Lewis-Hartmann(M-L-H)模型分别计算大叶片和小叶片激波损失的复合激波模型,制定了大小叶片装配方法,建立了大小叶片通流反问题设计系统。用该系统对某级增压比为2.20的单级高负荷后掠风扇进行了后掠和前掠大小叶片改型设计。经计算流体力学(CFD)检验,维持后掠造型的改型,在不提高设计点增压比的条件下,级绝热效率相当,流量和失速裕度都得到了提高;而大小叶片结合前掠的改型,当考虑单排静子的最大载荷将设计级增压比提高至2.31时,级绝热效率略微降低约0.3%,流量略减,失速裕度则显著提高。算例也表明通流反问题设计系统适合于大小叶片轴流级的设计。
Based upon a through-flow code of streamline-curvature method and a quasi-3D arbitrary airfoil blading code, a diffusion loss model is employed in terms of the adjusted factor, a compound shock loss model in terms of Miller-lewis-Hartman (M-L-H) model is developed and a splitter blade positioning scheme is established. Thus, an inverse design system for splittered axial compressors is composed. Using this design system, a high-loaded backward swept fan with a stage pressure ratio of 2.20 is redesigned firstly as a backward swept and secondly as a forward swept splittered fan. The numerical simulations of both flow fields are carried out. In the situation of keeping the prescribed pressure ratio, the backward swept splittered fan has a higher flow rate and a higher stall margin with an approximate adiabatic efficiency compared to the original design. When prescribing a higher pressure ratio of 2.31 which is sustainable by the single conventional stator row, the forward swept splittered fan increases greatly the stall margin with a negligible decline of the adiabatic efficiency by about 0.3% and a lower flow rate. The two redesigns also prove the competence of this design system.
[1] Wennerstrom A J, Forst G R. Design of a rotor incorporating splitter vanes for a high pressure ratio supersonic axial compressor stage. ARL-TR-1974-0110, 1974.
[2] Wennerstrom A J, Buzzell W A, de Rose R D, et al. Test of a supersonic axial compressor stage incorporating splitter vanes in the rotor. ARL-TR-1975-0165, 1975.
[3] Tzuoo K L, Hingorani S S, Sehra A K. Design methodology for splittered axial compressor rotors. ASME Paper 1990-GT-66, 1990.
[4] Tzuoo K L. Optimization of a highly-loaded axial splittered rotor design[J]. Revue Francaise de Mecanique, 1992(3).
[5] Qiu X, Dang T. Three dimension inverse method for turbomachine blading with splitter blades. ASME Paper 2000-GT-562, 2000.
[6] Wu Z H, Wang B G. Matrix solution of compressible flow on S1 surface through a turbomachine blade row with splitter vanes or tandem blade. ASME Paper 1983-GT-10, 1983.
[7] 陈懋章. 风扇/压气机技术发展和对今后工作的建议[J]. 航空动力学报, 2002, 17(1): 1-15. Chen Maozhang. Development of fan/compressor techniques and suggestions on further researches[J]. Journal of Aerospace Power, 2002, 17(1): 1-15. (in Chinese)
[8] 严明,陈懋章. 大小叶片轴流压气机转子流动特性分析[J]. 推进技术,2002, 23(4): 280-282. Yan Ming, Chen Maozhang. Flow performance analysis in an axial compressor rotor with splitter[J]. Journal of Propulsion Technology, 2002, 23(4): 280-282. (in Chinese)
[9] 王洪伟, 蒋浩康, 陈懋章. 大小叶片压气机平面叶栅试验研究[J]. 工程热物理学报, 2006, 27(1): 113-116. Wang Hongwei, Jiang Haokang, Chen Maozhang. Experimental investigation of splitter compressors in a planar cascade[J]. Journal of Engineering Thermophysics, 2006, 27(1): 113-116.(in Chinese)
[10] Li H P, Liu H X, Zou Z P. Analysis of flow mechanism in 2-D compressor cascade with splitter. ASME Paper 2005-GT-68207, 2005.
[11] 张永新,邹正平,严明,等. 单级大小叶片轴流压气机流动分析[J]. 航空动力学报,2004, 19(1): 89-93. Zhang Yongxin, Zhou Zhengping, Yan Ming, et al. Flow analysis of a single-stage axial flow compressor with splitter rotor[J]. Journal of Aerospace Power, 2004, 19(1): 89-93. (in Chinese)
[12] 李海鹏. 轴流大小叶片压气机流动数值研究. 北京:北京航空航天大学能源与动力工程学院,2006. Li Haipeng. Numerical analysis of flow in axial compressor with splitter. Beijing: School of Jet Propulsion,Beihang University, 2006. (in Chinese)
[13] 杨小贺,单鹏. 风扇与轴流离心压气机一体化通流设计方法[J]. 航空动力学报,2010, 25(2): 443-450. Yang Xiaohe, Shan Peng. The integrative design method of fan and axial-centrifugal compressor[J]. Journal of Aerospace Power, 2010, 25(2): 443-450. (in Chinese)
[14] Lieblein S, Schwenk F C, Broderick R L, et al. Diffusion factor for estimating losses and limiting blade loadings in axial-flow-compressor blade elements. NACA RM E53D01, 1953.
[15] Miller G R, Lewis G W, Hartmann M J. Shock losses in transonic compressor blade rows[J]. Transactions of the ASME, Journal of Engineering for Power, 1961, 83(3): 235-242.
[16] Koch C C, Smith L H. Loss sources and magnitudes in axial flow compressors[J]. Transactions of the ASME, Journal of Engineering for Power, 1976, 98(3): 411-424.
[17] Dunker R J. A shock loss model for supercritical subsonic flows in transonic axial flow compressors. AGARD-CP-401, 1987.
[18] 单鹏,桂幸民,周盛,等. 高负荷后掠风扇设计若干基本问题[J]. 工程热物理学报,1999, 20(5): 576-579. Shan Peng, Gui Xingmin, Zhou Sheng, et al. Fundamental considerations on high loading backward swept fan design[J]. Journal of Engineering Thermophysics, 1999, 20(5): 576-579. (in Chinese)