材料工程与机械制造

压电式微型合成射流器结构参数优化设计

展开
  • 西北工业大学 陕西省微/纳米系统重点实验室, 陕西 西安 710072
沈丹东(1985-) 男,硕士研究生。主要研究方向:MEMS致动器技术。 Tel: 029-88490353-8070 E-mail: dandongshen@126.com

收稿日期: 2010-12-10

  修回日期: 2011-01-07

  网络出版日期: 2011-09-16

基金资助

国家自然科学基金 (50775188);上海交通大学机械系统与振动国家重点实验室开放基金

Structural Parameters Optimization of Piezoelectric Micro Synthetic Jet Actuators

Expand
  • Micro and Nano Electromechanical Systems Laboratory, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2010-12-10

  Revised date: 2011-01-07

  Online published: 2011-09-16

摘要

压电式微型合成射流器的结构参数对射流速度有极大影响,然而各结构参数的影响规律及程度无法用单因素考查法来确定。针对这个问题,采用正交分析法结合多域耦合数值模拟,研究了主要结构参数对射流速度的综合影响,对器件结构参数进行了优化。仿真结果表明:在所考查的参数范围内,喷口宽度、腔体宽度、压电片厚度对射流速度的影响较大,但三者的影响程度依次降低;射流速度随喷口宽度、压电片厚度的增大而减小,随腔体宽度的增大而增大;压电片宽度对射流速度影响很小。在此基础上,采用微机电系统(MEMS)加工工艺制作了压电式微型合成射流器,测得器件能承受的最大激励电压为30 V,最大射流速度为10 m/s,最佳工作频率为10 kHz。

本文引用格式

沈丹东, 马炳和, 邓进军, 苑伟政 . 压电式微型合成射流器结构参数优化设计[J]. 航空学报, 2011 , 32(9) : 1755 -1760 . DOI: CNKI:11-1929/V.20110225.1654.001

Abstract

The orthogonal method and multiple-domain coupling numerical simulation are used to explore the influence of structural parameters on piezoelectric micro synthetic jet velocity. As a precondition the orifice thickness, chamber height and diaphragm thickness are predefined for the sake of micromachining economy. The results show that the orifice width, chamber width and PbZrxTi1-xO3 (PZT) thickness affect the jet velocity seriously. In the range of the test, the jet velocity decreases with increasing orifice width and PZT thickness, or with decreasing chamber width. The PZT width has the least influence on the jet velocity. The research is valuable for structural design optimization of piezoelectric micro synthetic jet actuators. Finally, piezoelectric micro synthetic jet actuators are fabricated with Si micromachining technology based on the above study. Peak jet velocity of 10 m/s is obtained with 30 V and 10 kHz AC electric drive.

参考文献

[1] Sefcovic J A, Smith D R. Proportional aerodynamic control of a swept divergent trailing edge wing using synthetic jets. AIAA-2010-92, 2010.

[2] Farnsworth J A N, Vaccaro J C, Amitay M. Active flow control at low angles of attack: stingray unmannedaerial vehicle[J]. AIAA Journal, 2008, 46(10): 2530-2544.

[3] Shea P R, Smith D R. Aerodynamic control of a rectangular wing using gurney flaps and synthetic jet. AIAA-2009-886, 2009.

[4] Slipher C A, Hubbard J E. Exploitation of higher order membrane modes for improved synthetic jet performance[J]. AIAA Journal, 2009, 47(6): 1388-1407.

[5] Kiddy J, Chen P, Niemczuk J. Active flow control using microelectromechanical systems. AIAA-2000-1561, 2000.

[6] Tang H, Zhong S. Modelling of the characteristics of synthetic jet actuators. AIAA-2005-4748, 2005.

[7] Gomes L D, Crowther W J, Wood N J. Towards a practical piezoceramic diaphragm based synthetic jet actuator for high subsonic applications: effect of chamber and orifice depth on actuator peak velocity. AIAA-2006-2859, 2006.

[8] Gallas Q, Holman R, Nishida T, et al. Lumped element modeling of piezoelectric-driven synthetic jet actuators. AIAA-2002-0125, 2002.

[9] Mallinsom S G, Reizes J A, Hong G, et al. The operation and application of synthetic jet actuators. AIAA-2000-2402, 2000.

[10] 罗振兵, 朱伯鹏, 夏智勋, 等. 激励器结构参数对合成射流影响的试验研究[J]. 国防科技大学学报, 2004, 26(6): 9-14. Luo Zhenbing, Zhu Bopeng, Xia Zhixun, et al. Experimental study of the effects of the geogmetric parameters of actuator on synthetic jets[J]. Journal of National University of Defense Technology, 2004, 26(6): 9-14. (in Chinese)

[11] BS EN ISO 5167-2. Measurement of flow by means of pressure differential devices inserted in circular crosssection conduits running full—Part 2: Orifice plates[S]. 2003.

[12] 许晓慧. 基于PZT厚膜的MEMS微变形镜. 合肥: 中国科学技术大学工程科学学院, 2008. Xu Xiaohui. MEMS deformable mirror based on PZT thich film. Hefei: School of Engineering Science, University of Science and Technology of China, 2008. (in Chinese)

[13] 王蔚. MEMS兼容压电厚膜驱动技术. 哈尔滨: 哈尔滨工业大学航天学院, 2007. Wang Wei. Driving technology of piezoelectric thick film compatible with MEMS. Harbin: School of Astronautics, Harbin Institute of Technology, 2007. (in Chinese)

[14] 罗剑, 苑伟政, 邓进军, 等. 压电式微型合成射流多域耦合数值模拟[J]. 航空学报, 2009, 30(7): 1181-1186. Luo Jian, Yuan Weizheng, Deng Jinjun, et al. Multi-domain coupling numerical simulation of micro piezoelectric synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7): 1181-1186. (in Chinese)

[15] 侯化国, 王玉民. 正交试验法[M]. 长春: 吉林人民出版社, 1985: 8-10. Hou Huaguo, Wang Yumin. Orthogonal experiment[M]. Changchun: Jilin People's Publishing House, 1985: 8-10. (in Chinese)

[16] 罗振兵. 合成射流流动机理及应用技术研究. 长沙: 国防科学技术大学航天与材料工程学院, 2002. Luo Zhenbing. Principle and applications of synthetic jet. Changsha: College of Aerospace and Materials Engineering, National University of Defense Technology, 2002. (in Chinese)
文章导航

/