电子与自动控制

考虑执行机构误差的编队卫星姿态分布式时延滑模自适应协同控制

展开
  • 哈尔滨工业大学 控制科学与工程系, 黑龙江 哈尔滨 150001
吕跃勇(1983-) 男,博士研究生。主要研究方向:航天器编队飞行控制、姿态控制、轨道控制。 Tel: 0451-86413411-8606 E-mail: lvyueyong@gmail.com; 马广富(1962-) 男,博士,教授,博士生导师。主要研究方向:卫星姿态控制、最优控制。 Tel: 0451-86402726 E-mail: magf@hit.edu.cn; 周稼康(1982-) 女,博士研究生。主要研究方向:航天器编队飞行控制、卫星姿态控制。 Tel: 0451-86413411-8606 E-mail: zhou_jia_kang@126.com

收稿日期: 2010-12-16

  修回日期: 2011-01-07

  网络出版日期: 2011-09-16

基金资助

国家自然科学基金(61004072);高等学校博士学科点专项科研基金(20102302110031);黑龙江省留学回国人员科学基金(LC08C01); 哈尔滨市科技创新人才研究专项基金(2010RFLXG001); 中央高校基本科研业务专项基金(HIT.KLOF.2010016)

Decentralized Time-delay Adaptive Sliding Mode Control for Attitude Coordination of Satellite Formation Under Actuator Misalignment

Expand
  • Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

Received date: 2010-12-16

  Revised date: 2011-01-07

  Online published: 2011-09-16

摘要

针对编队卫星姿态协同控制问题,在考虑到执行机构误差的前提下,提出一种将时延控制与滑模自适应控制相结合的鲁棒控制方法。该方法通过引入自适应更新律实现对执行机构小角度安装误差的在线估计,同时通过滑模控制完成对外界干扰和执行机构随机幅值误差等随机扰动的抑制。由于引入了时延环节,只需对上一时刻控制力矩进行单位时延,达到大大简化控制器设计复杂度的目的。基于Lyapunov稳定性理论,证明了闭环系统的稳定性。最后,通过数值仿真对提出的控制方法进行了验证,仿真结果表明该方法能够有效抑制外部干扰和执行机构随机幅值误差的影响,对执行机构安装误差的自适应在线估计能够快速稳定收敛,鲁棒性强,且具有良好的过渡过程品质。

本文引用格式

吕跃勇, 胡庆雷, 马广富, 周稼康 . 考虑执行机构误差的编队卫星姿态分布式时延滑模自适应协同控制[J]. 航空学报, 2011 , 32(9) : 1686 -1695 . DOI: CNKI:11-1929/V.20110316.1336.006

Abstract

This paper develops an adaptive sliding mode attitude control system combined with time-delay control for the attitude coordination of satellite formation, especially when there exists the misalignment and magnitude error of active actuators. An adaptive update algorithm is presented to estimate the misalignment of actuators online, while the external disturbances together with random magnitude errors of an actuator are attenuated by the sliding mode controller. In addition, due to the introduction of the time-delay element, which just delays the last instantaneous control torque for a unit time, the complexity of controller design is greatly reduced. The stability of the closed-loop system is also proved based on the Lyapunov theory. Finally, the effectiveness of the corresponding controller is studied through numerical simulation. The results demonstrate that the external disturbance and random magnitude error can be attenuated by choosing appropriate control parameters, and the adaptive update algorithm can converge in a short time as well.

参考文献

[1] Scharf D P, Hadaegh F Y, Ploen S R. A survey of spacecraft formation flying guidance and control (Part II): control//Proceeding of the 2004 American Control Conference. 2004: 2976-2985.

[2] Bristow J, Folta D, Hartman K. A formation flying technology vision. AIAA-2000-5194, 2000.

[3] Wang P, Hadaegh F. Coordination and control of micro-spacecraft moving in formation[J]. Astronautical Science, 1996, 44(3): 315-355.

[4] Wang P, Hadaegh F, Lau K. Synchronized formation rotation and attitude control of multiple free-flying spacecraft[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(1): 28-35.

[5] Kristiansen R. Spacecraft relative rotation tracking without angular velocity measurements[J]. Automatica, 2009, 45(3): 750-756.

[6] Bondhus A K, Pettersen K Y, Gravdahl J T. Leader/follower synchronization of satellite attitude without angular velocity measurements//44th IEEE Conference on Decision and Control. 2005: 7270-7277.

[7] Beard R, Lawton J, Hadaegh F. A coordination architecture for formation control[J]. IEEE Transactions on Control Systems Technology, 2001, 9(6): 777-790.

[8] Ahn C, Kim Y. Point targeting of multi-satellites via a virtual structure formation flight scheme. AIAA-2008-6471, 2008.

[9] Ren W, Beard R. Formation feedback control for multiple spacecraft via virtual structures//IEE Proceedings Control Theory and Applications, 2004, 151(3): 357-368.

[10] Wolff P J, Pinto F, Williams B G, et al. Navigation considerations for low-thrust planetary missions//8th AAS/AIAA Spaceflight Mechanics Meeting. 1998: 1-10.

[11] Lim H C, Bang H. Adaptive control for satellite formation flying under thrust misalignment[J]. Acta Astronautica, 2009, 65(1-2): 112-122.

[12] Massey T, Shtessel Y. Continuous traditional and high-order sliding modes for satellite formation control[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 826-831.

[13] Liu H, Li J F. Terminal sliding mode control for spacecraft formation flying[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 835-846.

[14] Feng Y, Yu X H, Man Z Z. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(9): 2159-2167.

[15] Liu H T, Shan J J, Sun D. Adaptive synchronization control of multiple spacecraft formation flying[J]. Dynamic Systems, Measurement, and Control, 2007, 129(3): 337-342.

[16] de Queiroz M S, Kapila V, Yan Q G. Adaptive nonlinear control of multiple spacecraft formation flying[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(3): 385-390.

[17] Lim H C, Bang H, Kim B. Adaptive backstepping control for satellite formation flying with thruster error//AIAA 57th International Astronautical Congress. 2006: 4553-4558.

[18] Shuster M D. A survey of attitude representations[J]. Astronautical Sciences, 1993, 41(4): 439-517.

[19] 马广富, 姜野, 胡庆雷. 卫星姿态时延反步容错控制[J]. 航空学报,2010,31(5): 1066-1073. Ma Guangfu, Jiang Ye, Hu Qinglei. Time delay backstepping based fault tolerant attitude control of satellites[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5): 1066-1073. (in Chinese)

[20] Hu Q L. Semi-globally input-to-state stable controller design for flexible spacecraft attitude stabilization under bounded disturbances[J]. Acta Astronautica, 2010, 66(3-4): 567-576.
文章导航

/