诱饵的存在性检测是对抗拖曳式有源雷达诱饵干扰的前提,也是决定抗干扰效果的重要因素。当导引头雷达发射多个不同频率的脉冲信号时,在一定的检测处理时长内目标回波信号幅度服从瑞利分布,而诱饵干扰信号则是幅度固定的。基于导引头雷达波束内诱饵存在导致的回波特征变化,通过提取诱饵存在/不存在两种情况下雷达接收回波信号的幅度特征差异以及对应单脉冲比特性变化,推导了两种假设条件下比幅测角扩展单脉冲比的条件概率密度函数,并在此基础上提出了采用Neyman-Pearson准则的广义最大似然比(GLRT)诱饵存在性检测方法以及干扰检测处理流程。不同干扰场景和条件下的仿真实验验证了该检测方法的有效性,能够满足拖曳式诱饵干扰对抗的需求。
The detection of the presence of the decoy is the foundation of countering the towed radar active decoy (TRAD) and it determines the effect of the ECCM. When the radar seeker transmits several different frequency pulses, the echo amplitude of the target follows the Rayleigh distribution and that of the decoy is assumed fixed. This paper presents an analysis of the variation of the echo characteristic in the radar beam and when a towed decoy exists extracts the feature distinction of the echoes amplitude and the corresponding monopulse ratio under the two hypotheses that the decoy is present or not. The conditional probability density functions (pdfs) of the extended monopulse ratio are given when the radar seeker adopts the amplitude comparison monopulse under above two hypotheses are given. The detection of presence of the TRAD based on the generalized maximum likelihood ratio (GLRT) is developed which adopts the Neyman-Pearson method and the processing flow of the decoy detection is also given. Simulation results under different conditions and scenarios illustrate the performance of the proposed method is effective and satisfy the requirement of ECCM.
[1] 王万通, 庞国荣. 拖曳式有源雷达诱饵[J]. 电子对抗技术, 1998, 13(3): 21-26. Wang Wantong, Pang Guorong. Towed radar active decoy[J]. Electronic Warfare Technology, 1998, 3(3): 21-26. (in Chinese)
[2] 张文俊. 新一代先进诱饵发挥出巨大作用[J]. 电子侦察干扰, 2001(2):39-42. Zhang Wenjun. The new generation decoys bring great effect[J]. Electronic Reconnaissance and Counter, 2001(2): 39-42. (in Chinese)
[3] 侯向辉, 刘晓东, 李仙茂. 拖曳式诱饵诱骗防空导弹探讨[J]. 舰船电子对抗, 2010, 33(1): 40-43. Hou Xianghui, Liu Xiaodong, Li Xianmao. Discussion of towed decoy deceiving air-defence missile[J]. Shipboard Electronic Countermeasure, 2010, 33(1): 40-43. (in Chinese)
[4] 耿艳, 白渭雄, 苗松娟. 两点源对单脉冲雷达角度欺骗干扰的仿真与分析[J]. 火力与指挥控制, 2010, 35(7):151-157. Geng Yan, Bai Weixiong, Miao Songjuan. Simulation and analysis of the angle deception jamming of dual sources on monopulse radar[J]. Fire Control & Command Control, 2010, 35(7): 151-157. (in Chinese)
[5] 白渭雄, 李爱飞, 李树斌. 雷达诱饵的干扰仿真及分析[J]. 电子信息对抗技术, 2008, 23(4): 53-57. Bai Weixiong, Li Aifei, Li Shubin. Simulation and analysis of radar decoy jamming[J]. Electronic Information Warfare Technology, 2008, 23(4): 53-57. (in Chinese)
[6] 白渭雄, 唐宏, 陶建峰. 拖曳式诱饵对单脉冲雷达的干扰分析[J]. 电子信息对抗技术, 2007, 22(6): 39-42. Bai Weixiong, Tang Hong, Tao Jianfeng. Analysis of towed decoy jamming on monopulse radar[J]. Electronic Information Warfare Technology, 2007, 22(6): 39-42. (in Chinese)
[7] 范文同, 王星, 叶广强. 机载拖曳式有源诱饵作战效能研究[J]. 现代电子技术, 2010, 33(3): 10-12. Fan Wentong, Wang Xing, Ye Guangqiang. Combat effectiveness study for airborne towed radar active decoy[J]. Modern Electronic Technique, 2010, 33(3): 10-12. (in Chinese)
[8] Sherman S P. Complex indicated angles applied to unresolved radar targets and multipath[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, 7(1): 160-170.
[9] Mcaulay R J, Mcgarty T P. Maximum-likelihood detection of unresolved radar targets and multipath[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, 10(6): 821-829.
[10] Bogler P L. Detecting the presence of target multiplicity[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, 22(2): 197-203.
[11] Asseo S J. Detection of target multiplicity using monopulse quadrature angle[J]. IEEE Transactions on Aerospace and Electronic Systems, 1981, 17(2): 271-280.
[12] Blair W D, Brandt-Pearce M. Unresolved Rayleigh target detection using monopulse measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(2): 543-552.
[13] Nandakumaran N, Sinha A, Kirubarajan T. Joint detection and tracking of unresolved targets with monopulse Radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(4): 1326-1341.
[14] Sinha A, Kirubarajan T, Bar-Shalom Y. Maximum likelihood angle extractor for tracking Rayleigh targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1): 183-203.
[15] Zhang X, Willett P K, Bar-Shalom Y. Monopulse radar detection and localization of multiple unresolved targets via joint bin processing[J]. IEEE Transactions on Singal rocessing, 2005, 53(4): 1225-1236.
[16] Zhang X, Willett P K, Bar-Shalom Y. Detection and localization of multiple unresolved extended targets via monopulse radar signal processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 455-472.
[17] Blair W D, Brandt-Pearce M. Statistical description of monopulse parameters for tracking Rayleigh targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(2): 597-612.
[18] Papanicolopoulos C D, Blair W D, Sherman D L, et al. Use of a rician distribution for modeling aspect-dependent RCS amplitude and scintillation//International Radar Conference. Boston, USA: IEEE, 2007: 218-223.
[19] Blair W D, Brandt-Pearce M. Signal amplitude conditioned density function for monopulse measurements of fixed-amplitude targets//International Radar Conference. Michigan, USA: IEEE, 1996: 374-379.
[20] Blair W D, Brandt-Pearce M. Monopulse processing for tracking unresolved targets. Naval Surface Warfare Center, DINSWCDD/TR-A655033, 1997.